
If \[\sqrt 2 = 1.414\] and \[\sqrt 5 = 2.236\], find the value of \[\dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }}\] up to three places of decimals.
Answer
544.5k+ views
Hint:
Here, we have to find the value of the given mathematical expression. We will simplify the given mathematical expression by rationalizing the denominator. Then we will substitute the values in the expression and solve it further to find the required value.
Formula Used:
Rule of surds: \[\sqrt {a \times b} = \sqrt a \times \sqrt b \]
Complete step by step solution:
We will find the value of \[\dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }}\]
Now, we will rationalize the denominator by multiplying the numerator and the denominator by \[\sqrt 2 \], we get
\[\dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\]
By multiplying the terms, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\sqrt 2 \left( {\sqrt {10} } \right) - \sqrt 2 \left( {\sqrt 5 } \right)}}{{2\sqrt 2 \times \sqrt 2 }}\]
Multiplying the surds, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\left( {\sqrt {2 \times 10} } \right) - \left( {\sqrt {2 \times 5} } \right)}}{{2{{\left( {\sqrt 2 } \right)}^2}}}\]
By simplification, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\left( {\sqrt {2 \times 2 \times 5} } \right) - \left( {\sqrt {2 \times 5} } \right)}}{{2 \times 2}}\]
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{2\left( {\sqrt 5 } \right) - \left( {\sqrt {2 \times 5} } \right)}}{4}\]
Now, using the rule of surds \[\sqrt {a \times b} = \sqrt a \times \sqrt b \], we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{2\left( {\sqrt 5 } \right) - \sqrt 2 \times \sqrt 5 }}{4}\]
Substituting \[\sqrt 2 = 1.414\] and \[\sqrt 5 = 2.236\], we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{2\left( {2.236} \right) - \left( {1.414} \right) \times \left( {2.236} \right)}}{4}\]
By multiplying the terms and simplifying the expression, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{4.472 - 3.1617}}{4}\]
Subtracting the terms, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{1.3103}}{4}\]
By dividing the numerator by denominator, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = 0.327575\]
Now, we will correct the decimal up to three decimals.
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} \simeq 0.327\]
Therefore, the value of \[\dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }}\] is \[0.327\]
Note:
We know that rationalizing the denominator is a method of eliminating the radical expressions in the denominator such as the square roots or cube roots by multiplying with the conjugate to make the denominator a rational number. We can also find the value by directly substituting the given values.
\[\dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\sqrt {2 \times 5} - \sqrt 5 }}{{2\sqrt 2 }}\]
By using the rule of surds \[\sqrt {a \times b} = \sqrt a \times \sqrt b \], we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\sqrt 2 \left( {\sqrt 5 } \right) - \sqrt 5 }}{{2\sqrt 2 }}\]
Substituting \[\sqrt 2 = 1.414\] and \[\sqrt 5 = 2.236\], we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{1.414\left( {2.236} \right) - \left( {2.236} \right)}}{{2 \times \left( {1.414} \right)}}\]
By multiplying the decimals, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{3.161704 - 2.236}}{{2.828}}\]
By subtracting the terms, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{0.925704}}{{2.828}}\]
By dividing the terms, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = 0.32733\]
Now, we will correct the decimal up to three decimals.
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} \simeq 0.327\]
Therefore, the value of \[\dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }}\] is \[0.327\].
Here, we have to find the value of the given mathematical expression. We will simplify the given mathematical expression by rationalizing the denominator. Then we will substitute the values in the expression and solve it further to find the required value.
Formula Used:
Rule of surds: \[\sqrt {a \times b} = \sqrt a \times \sqrt b \]
Complete step by step solution:
We will find the value of \[\dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }}\]
Now, we will rationalize the denominator by multiplying the numerator and the denominator by \[\sqrt 2 \], we get
\[\dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\]
By multiplying the terms, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\sqrt 2 \left( {\sqrt {10} } \right) - \sqrt 2 \left( {\sqrt 5 } \right)}}{{2\sqrt 2 \times \sqrt 2 }}\]
Multiplying the surds, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\left( {\sqrt {2 \times 10} } \right) - \left( {\sqrt {2 \times 5} } \right)}}{{2{{\left( {\sqrt 2 } \right)}^2}}}\]
By simplification, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\left( {\sqrt {2 \times 2 \times 5} } \right) - \left( {\sqrt {2 \times 5} } \right)}}{{2 \times 2}}\]
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{2\left( {\sqrt 5 } \right) - \left( {\sqrt {2 \times 5} } \right)}}{4}\]
Now, using the rule of surds \[\sqrt {a \times b} = \sqrt a \times \sqrt b \], we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{2\left( {\sqrt 5 } \right) - \sqrt 2 \times \sqrt 5 }}{4}\]
Substituting \[\sqrt 2 = 1.414\] and \[\sqrt 5 = 2.236\], we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{2\left( {2.236} \right) - \left( {1.414} \right) \times \left( {2.236} \right)}}{4}\]
By multiplying the terms and simplifying the expression, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{4.472 - 3.1617}}{4}\]
Subtracting the terms, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{1.3103}}{4}\]
By dividing the numerator by denominator, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = 0.327575\]
Now, we will correct the decimal up to three decimals.
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} \simeq 0.327\]
Therefore, the value of \[\dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }}\] is \[0.327\]
Note:
We know that rationalizing the denominator is a method of eliminating the radical expressions in the denominator such as the square roots or cube roots by multiplying with the conjugate to make the denominator a rational number. We can also find the value by directly substituting the given values.
\[\dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\sqrt {2 \times 5} - \sqrt 5 }}{{2\sqrt 2 }}\]
By using the rule of surds \[\sqrt {a \times b} = \sqrt a \times \sqrt b \], we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{\sqrt 2 \left( {\sqrt 5 } \right) - \sqrt 5 }}{{2\sqrt 2 }}\]
Substituting \[\sqrt 2 = 1.414\] and \[\sqrt 5 = 2.236\], we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{1.414\left( {2.236} \right) - \left( {2.236} \right)}}{{2 \times \left( {1.414} \right)}}\]
By multiplying the decimals, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{3.161704 - 2.236}}{{2.828}}\]
By subtracting the terms, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = \dfrac{{0.925704}}{{2.828}}\]
By dividing the terms, we get
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} = 0.32733\]
Now, we will correct the decimal up to three decimals.
\[ \Rightarrow \dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }} \simeq 0.327\]
Therefore, the value of \[\dfrac{{\sqrt {10} - \sqrt 5 }}{{2\sqrt 2 }}\] is \[0.327\].
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

