
If \[\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx,0 < a < 2 = \dfrac{2}{{3a}}\mathop {\{ ax + a\sqrt {ax - \mathop a\nolimits^2 } \} }\nolimits^{\dfrac{3}{2}} - \dfrac{{\sqrt a }}{2}\left| {A + B} \right| + c.\]Then
A) $A = [\{ (\sqrt {ax - \mathop a\nolimits^2 } + \dfrac{{\mathop a\nolimits^2 }}{2})\sqrt {ax + \mathop a\nolimits^2 \sqrt {ax - \mathop a\nolimits^2 } } \} ]$
B) $B = \log [\{ (\sqrt {ax - \mathop a\nolimits^2 } + \dfrac{{\mathop a\nolimits^2 }}{2}) + \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \} ]$
C) $A = \{ (\sqrt {ax - \mathop a\nolimits^2 } + \dfrac{{\mathop a\nolimits^2 }}{2})\sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \} $
D) $B = \log \{ \sqrt {ax - \mathop a\nolimits^2 } + \dfrac{{\mathop a\nolimits^2 }}{2}\sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \} $
Answer
589.2k+ views
Hint: When there is $\left( {\mathop x\nolimits^2 - \mathop a\nolimits^2 } \right)$ or $\left( {\mathop x\nolimits^2 + \mathop a\nolimits^2 } \right)$ in the integrant, then substitute $x = a\sec \theta $or $x = a\cos \theta $ accordingly.
Familiarization with trigonometric identities is a must to solve the calculus problems
To simplify the integration, try to use the substitution method.
A glance at the substitution method is given below.
*Integration by substitution
The given integral $\int {f\left( x \right)} dx$can be transformed into another form by changing the independent variable x to t by substitution $x = g\left( t \right)$.
Consider $I = $ $\int {f\left( x \right)} dx$
Put $x = g\left( t \right)$ so that $\dfrac{{dx}}{{dt}} = g'\left( t \right)$
We write dx=g'tdt$dx = g'\left( t \right)dt$
Thus $I = $ $\int {f\left( x \right)} dx$$ = \int {f\left( {g\left( t \right)} \right)} g'\left( t \right)dt$
Convert the quadratic equation in perfect square to apply the integration of a particular function.
Key rule: Either substitute in the integration whose derivative is present or convert into a perfect square whose integral is already defined.
Complete step-by-step answer:
Step 1: given that:
I = \[\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx\]= \[\dfrac{2}{{\mathop a\nolimits^{\dfrac{3}{2}} }}\mathop {\{ ax + a\sqrt {ax - \mathop a\nolimits^2 } \} }\nolimits^{\dfrac{3}{2}} - \dfrac{{\sqrt a }}{2}\left| {A + B} \right| + c\]
Provided: \[0 < a < 2\]
Step 2: To find
A and B
Step 3: solve the integration, I
I = \[\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx\]
Let $x = a\mathop {\sec }\nolimits^2 \theta $
On differentiating both sides, we get
We know, $\dfrac{{d\left( {\sec x} \right)}}{{dx}} = \sec x\tan x$
$
dx = 2a\sec \theta \cdot \sec \theta \tan \theta {\text{ }}d\theta \\
{\text{ }} = 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta \\
$
On substituting, the integration becomes
$ \Rightarrow \smallint \sqrt {a \cdot a\mathop {\sec }\nolimits^2 \theta + a\sqrt {a \cdot a\mathop {\sec }\nolimits^2 - \mathop a\nolimits^2 } } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
$ \Rightarrow \smallint \sqrt {\mathop a\nolimits^2 \mathop {\sec }\nolimits^2 \theta + a\sqrt {\mathop a\nolimits^2 \mathop {(\sec }\nolimits^2 - 1)} } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
Using trigonometric identity: $\mathop {\tan }\nolimits^2 \theta + 1 = \mathop {\sec }\nolimits^2 \theta $
$\mathop {\because {\text{ }}\sec }\nolimits^2 \theta - 1 = \mathop {\tan }\nolimits^2 \theta $
$ \Rightarrow \smallint \sqrt {\mathop a\nolimits^2 \mathop {\sec }\nolimits^2 \theta + a\sqrt {\mathop a\nolimits^2 \mathop {(\tan }\nolimits^2 \theta )} } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
We know, \[\sqrt {{x^2}} = x\]
$ \Rightarrow \smallint \sqrt {\mathop a\nolimits^2 \mathop {\sec }\nolimits^2 \theta + \mathop a\nolimits^2 \tan \theta } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
Using trigonometric identity: $\mathop {\tan }\nolimits^2 \theta + 1 = \mathop {\sec }\nolimits^2 \theta $
$ \Rightarrow \smallint \sqrt {\mathop a\nolimits^2 (\mathop {\tan }\nolimits^2 \theta + 1) + \mathop a\nolimits^2 \tan \theta } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
Taking ${a^2}$ as common.
$ \Rightarrow \smallint \sqrt {\mathop a\nolimits^2 (\mathop {\tan }\nolimits^2 \theta + 1 + \tan \theta )} 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
We know, $\sqrt {{a^2}} = a$, this a is multiplied with 2a.
$ \Rightarrow \smallint \mathop {2a}\nolimits^2 \sqrt {(\mathop {\tan }\nolimits^2 \theta + 1 + \tan \theta )} \mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
Differentiation of $\tan \theta $ i.e. $\mathop {\sec }\nolimits^2 \theta $ is present outside the square root, hence simplify using substitution.
Take $\tan \theta = t$
On differentiating both sides, we get
$\mathop {\sec }\nolimits^2 \theta {\text{ }}d\theta = dt$
On substituting, the integration becomes
$ \Rightarrow \smallint \mathop {2a}\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ t }}dt$
Differentiation of $(\mathop t\nolimits^2 + 1 + t)$ is $2t + 1$, if $2t + 1$ was present in the integral then we can use the substitution method.
Combine 2 with t, Add +1, -1 to t will not affect the integration.
$ \Rightarrow \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ (2t + 1 - 1) }}dt$
Separating the integration over $2t + 1$ and -1
$I = \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ (2t + 1)}}dt - \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ }}dt$
Let $\mathop I\nolimits_1 = \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ (2t + 1)}}dt$
Differentiation of $(\mathop t\nolimits^2 + 1 + t)$ i.e. $2t + 1$is present, hence simplify using substitution.
Take $(\mathop t\nolimits^2 + 1 + t) = \tau $
On differentiating both sides, we get
$\left( {2t + 1} \right)dt = d\tau $
On substituting, the integration becomes
$\mathop I\nolimits_1 = \smallint \mathop a\nolimits^2 \sqrt \tau d\tau $
Using integration: \[\int {{x^n}} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
\[
\Rightarrow \mathop a\nolimits^2 \dfrac{{\mathop \tau \nolimits^{\dfrac{1}{2} + 1} }}{{\dfrac{1}{2} + 1}} + \mathop c\nolimits_1 \\
\Rightarrow \mathop a\nolimits^2 \dfrac{{\mathop \tau \nolimits^{\dfrac{3}{2}} }}{{\dfrac{3}{2}}} + \mathop c\nolimits_1 \\
\]
Here, $\mathop c\nolimits_1 $ is constant of integration
$ \Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop \tau \nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 $
Now, substituting back (t, x,) what we have let so far.
We know, $\tau = (\mathop t\nolimits^2 + 1 + t)$
$ \Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {(\mathop t\nolimits^2 + t + 1)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 $
We know, $t = \tan \theta $
${I_1} = \dfrac{2}{3}\mathop a\nolimits^2 \mathop {(\mathop {\tan }\nolimits^2 \theta + \tan \theta + 1)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 $
We know, $x = a\mathop {\sec }\nolimits^2 \theta $
\[
\Rightarrow \dfrac{x}{a} = \mathop {\sec }\nolimits^2 \theta \\
\Rightarrow \dfrac{x}{a} = \mathop {\tan }\nolimits^2 \theta + 1 \\
\Rightarrow \mathop {\tan }\nolimits^2 \theta = \dfrac{x}{a} - 1 \\
\Rightarrow \mathop {\tan }\nolimits^2 \theta = \dfrac{{x - a}}{a}{\text{ }}......{\text{ (1)}} \\
\Rightarrow \tan \theta = \sqrt {\dfrac{{x - a}}{a}} \\
\Rightarrow \tan \theta = \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}{\text{ }}......{\text{ (2)}} \\
\]
On substituting the values of $\mathop {\tan }\nolimits^2 \theta $ and $\tan \theta $ in $\mathop I\nolimits_1 $, we get
$\mathop I\nolimits_1 = \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\left( {\dfrac{{x - a}}{a} + \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a} + 1} \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 $
Canceling a which is common in numerator and denominator
\[ \Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\left( {\dfrac{{a(x - a)}}{{\mathop a\nolimits^2 }} + \dfrac{{a\sqrt {ax - \mathop a\nolimits^2 } }}{{\mathop a\nolimits^2 }} + 1} \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 \]
Taking LCM ${a^2}$ and simplifying.
\[
\Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\left( {\dfrac{{ax - \mathop a\nolimits^2 + a\sqrt {ax - \mathop a\nolimits^2 } + \mathop a\nolimits^2 }}{{\mathop a\nolimits^2 }}} \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 \\
\Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\dfrac{{\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} }}{{\mathop a\nolimits^{2 \times \dfrac{3}{2}} }}}\nolimits^{} + \mathop c\nolimits_1 \\
\Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \dfrac{{\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} }}{{\mathop a\nolimits^3 }} + \mathop c\nolimits_1 \\
\]
\[\mathop I\nolimits_1 = \dfrac{2}{{3a}}\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 \]
Let $\mathop I\nolimits_2 = \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ }}dt$
Convert the quadratic equation $(\mathop t\nolimits^2 + t + 1)$in the form of \[\mathop {(a + b)}\nolimits^2 \]
$
(\mathop t\nolimits^2 + t + 1) = (\mathop t\nolimits^2 + t + 1 + \dfrac{1}{4} - \dfrac{1}{4}) \\
{\text{ }} = (\mathop t\nolimits^2 + t + \mathop {(\dfrac{1}{2})}\nolimits^2 + \dfrac{3}{4}) \\
{\text{ }} = [\mathop {(t + \dfrac{1}{2})}\nolimits^2 + \dfrac{3}{4}] \\
$
On substituting, the integration becomes
$\mathop I\nolimits_2 = \smallint \mathop a\nolimits^2 \sqrt {\left[ {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \dfrac{3}{4}} \right]} {\text{ }}dt$
$ \Rightarrow \mathop a\nolimits^2 \int {\sqrt {\left[ {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \mathop {\left( {\dfrac{{\sqrt 3 }}{2}} \right)}\nolimits^2 } \right]} {\text{ }}dt} $
Using the special integration of type \[\int {\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } } \]
\[\int {\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } } dx = \dfrac{1}{2}x\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } + \dfrac{{\mathop b\nolimits^2 }}{2}\log \left| {x + \sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } } \right| + C\]
On comparing : $x = t + \dfrac{1}{2};{\text{ }}b = \dfrac{{\sqrt 3 }}{2}$
Hence, \[\mathop I\nolimits_2 = \dfrac{{\mathop a\nolimits^2 }}{2}\left( {t + \dfrac{1}{2}} \right)\sqrt {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \dfrac{3}{4}} + \dfrac{{\mathop a\nolimits^2 3}}{8}\log \left| {\left( {t + \dfrac{1}{2}} \right) + \sqrt {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \dfrac{3}{4}} } \right| + C\]
Simplifying the expressions under the square-roots
\[
\Rightarrow \dfrac{{\mathop a\nolimits^2 }}{2}\left( {t + \dfrac{1}{2}} \right)\sqrt {(\mathop t\nolimits^2 + t + 1)} + \dfrac{{\mathop a\nolimits^2 3}}{8}\log \left| {\left( {t + \dfrac{1}{2}} \right) + \sqrt {(\mathop t\nolimits^2 + t + 1)} } \right| + \mathop c\nolimits_2 \\
\Rightarrow \dfrac{{\mathop a\nolimits^2 }}{4}\left( {2t + 1} \right)\sqrt {(\mathop t\nolimits^2 + t + 1)} + \dfrac{{\mathop a\nolimits^2 3}}{8}\log \left| {\left( {t + \dfrac{1}{2}} \right) + \sqrt {(\mathop t\nolimits^2 + t + 1)} } \right| + \mathop c\nolimits_2 \\
\]
Now, substituting back (t, x,) what we have let so far.
We know, $t = \tan \theta $
\[\tan \theta = \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}{\text{ }}\]
Hence, \[t = \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}{\text{ }}\]
\[(\mathop t\nolimits^2 + t + 1) = \mathop {\left( {\dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}} \right)}\nolimits^2 + \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a} + 1\]
Simplify taking LCM ${a^2}$
\[
= \dfrac{{ax - \mathop a\nolimits^2 + a\sqrt {ax - \mathop a\nolimits^2 } + \mathop a\nolimits^2 }}{{\mathop a\nolimits^2 }} \\
= \dfrac{{ax + a\sqrt {ax - \mathop a\nolimits^2 } }}{{\mathop a\nolimits^2 }} \\
\]
On substituting values of $t$ and \[(\mathop t\nolimits^2 + t + 1)\] integration $\mathop I\nolimits_2 $,
\[{I_2} = \dfrac{{{a^2}}}{4}\left[ {\left( {\dfrac{{2\sqrt {ax - {a^2}} }}{a} + 1} \right)\sqrt {\dfrac{{ax + a\sqrt {ax - {a^2}} }}{{{a^2}}}} } \right] + \dfrac{{3{a^3}}}{8}\log \left[ {\dfrac{{\sqrt {ax - {a^2}} }}{a} + \dfrac{1}{2} + \sqrt {\dfrac{{ax + a\sqrt {ax - {a^2}} }}{{{a^2}}}} } \right] + {c_2}\]
Cancel the common terms of numerator and denominator, in the second term the denominator 2a.
\[ \Rightarrow \dfrac{{{{{a^2}}}}}{4}\left[ {\left( {\dfrac{{2\sqrt {ax - {a^2}} + a}}{{{a}}}} \right)\dfrac{{\sqrt {ax + a\sqrt {ax - {a^2}} } }}{{{a}}}} \right] + \dfrac{{3{a^3}}}{8}\log \left[ {\dfrac{{2\sqrt {ax - {a^2}} }}{{2a}} + \dfrac{a}{{2a}} + \dfrac{{2\sqrt {ax + a\sqrt {ax - {a^2}} } }}{{2a}}} \right] + {c_2}\]
Using the property of logarithm:
$\log \dfrac{a}{b} = \log a - \log b$
\[ \Rightarrow \left[ {\dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] - \dfrac{{3{a^2}}}{8}\log (2a) + {c_2}\]
The term \[\left( { - \dfrac{{3{a^2}}}{8}\log (2a)} \right)\] is constant, therefore combine it with integration constant ${c_2}$.
\[ \Rightarrow \dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + \mathop c\nolimits_3 \]
Where $\mathop c\nolimits_3 $ is the integration of constants
We know, $I = \mathop I\nolimits_1 + \mathop I\nolimits_2 $
\[\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx\]
\[ = \dfrac{2}{{3a}}\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 \] \[ + \dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + \mathop c\nolimits_3 \]
\[ = \dfrac{2}{{3a}}\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} \; + \dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + c\]
Where $c = {c_1} + {c_3}$
On comparing with the given solution:
\[\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx,0 < a < 2 = \dfrac{2}{{3a}}\mathop {\{ ax + a\sqrt {ax - \mathop a\nolimits^2 } \} }\nolimits^{\dfrac{3}{2}} - \dfrac{{\sqrt a }}{2}\left| {A + B} \right| + c.\]
For the values of A and B options (B) and (C) is correct.
Final answer: For the values of A and B options (B) and (C) are correct.
Note: Carefully do the calculation, emphasize on each and every step. Especially while substituting the values of ${I_1}$ and ${I_2}$
For instance, while using the special integration of particular functions of type \[\int {\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } } \],
Compare with the integral judiciously, $\mathop {\left( x \right)}\nolimits^2 $ implies the whole square of variable function and
\[\mathop {\left( b \right)}\nolimits^2 \] implies the whole square of constant function.
Familiarization with trigonometric identities is a must to solve the calculus problems
To simplify the integration, try to use the substitution method.
A glance at the substitution method is given below.
*Integration by substitution
The given integral $\int {f\left( x \right)} dx$can be transformed into another form by changing the independent variable x to t by substitution $x = g\left( t \right)$.
Consider $I = $ $\int {f\left( x \right)} dx$
Put $x = g\left( t \right)$ so that $\dfrac{{dx}}{{dt}} = g'\left( t \right)$
We write dx=g'tdt$dx = g'\left( t \right)dt$
Thus $I = $ $\int {f\left( x \right)} dx$$ = \int {f\left( {g\left( t \right)} \right)} g'\left( t \right)dt$
Convert the quadratic equation in perfect square to apply the integration of a particular function.
Key rule: Either substitute in the integration whose derivative is present or convert into a perfect square whose integral is already defined.
Complete step-by-step answer:
Step 1: given that:
I = \[\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx\]= \[\dfrac{2}{{\mathop a\nolimits^{\dfrac{3}{2}} }}\mathop {\{ ax + a\sqrt {ax - \mathop a\nolimits^2 } \} }\nolimits^{\dfrac{3}{2}} - \dfrac{{\sqrt a }}{2}\left| {A + B} \right| + c\]
Provided: \[0 < a < 2\]
Step 2: To find
A and B
Step 3: solve the integration, I
I = \[\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx\]
Let $x = a\mathop {\sec }\nolimits^2 \theta $
On differentiating both sides, we get
We know, $\dfrac{{d\left( {\sec x} \right)}}{{dx}} = \sec x\tan x$
$
dx = 2a\sec \theta \cdot \sec \theta \tan \theta {\text{ }}d\theta \\
{\text{ }} = 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta \\
$
On substituting, the integration becomes
$ \Rightarrow \smallint \sqrt {a \cdot a\mathop {\sec }\nolimits^2 \theta + a\sqrt {a \cdot a\mathop {\sec }\nolimits^2 - \mathop a\nolimits^2 } } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
$ \Rightarrow \smallint \sqrt {\mathop a\nolimits^2 \mathop {\sec }\nolimits^2 \theta + a\sqrt {\mathop a\nolimits^2 \mathop {(\sec }\nolimits^2 - 1)} } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
Using trigonometric identity: $\mathop {\tan }\nolimits^2 \theta + 1 = \mathop {\sec }\nolimits^2 \theta $
$\mathop {\because {\text{ }}\sec }\nolimits^2 \theta - 1 = \mathop {\tan }\nolimits^2 \theta $
$ \Rightarrow \smallint \sqrt {\mathop a\nolimits^2 \mathop {\sec }\nolimits^2 \theta + a\sqrt {\mathop a\nolimits^2 \mathop {(\tan }\nolimits^2 \theta )} } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
We know, \[\sqrt {{x^2}} = x\]
$ \Rightarrow \smallint \sqrt {\mathop a\nolimits^2 \mathop {\sec }\nolimits^2 \theta + \mathop a\nolimits^2 \tan \theta } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
Using trigonometric identity: $\mathop {\tan }\nolimits^2 \theta + 1 = \mathop {\sec }\nolimits^2 \theta $
$ \Rightarrow \smallint \sqrt {\mathop a\nolimits^2 (\mathop {\tan }\nolimits^2 \theta + 1) + \mathop a\nolimits^2 \tan \theta } 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
Taking ${a^2}$ as common.
$ \Rightarrow \smallint \sqrt {\mathop a\nolimits^2 (\mathop {\tan }\nolimits^2 \theta + 1 + \tan \theta )} 2a\mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
We know, $\sqrt {{a^2}} = a$, this a is multiplied with 2a.
$ \Rightarrow \smallint \mathop {2a}\nolimits^2 \sqrt {(\mathop {\tan }\nolimits^2 \theta + 1 + \tan \theta )} \mathop {\sec }\nolimits^2 \theta \tan \theta {\text{ }}d\theta $
Differentiation of $\tan \theta $ i.e. $\mathop {\sec }\nolimits^2 \theta $ is present outside the square root, hence simplify using substitution.
Take $\tan \theta = t$
On differentiating both sides, we get
$\mathop {\sec }\nolimits^2 \theta {\text{ }}d\theta = dt$
On substituting, the integration becomes
$ \Rightarrow \smallint \mathop {2a}\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ t }}dt$
Differentiation of $(\mathop t\nolimits^2 + 1 + t)$ is $2t + 1$, if $2t + 1$ was present in the integral then we can use the substitution method.
Combine 2 with t, Add +1, -1 to t will not affect the integration.
$ \Rightarrow \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ (2t + 1 - 1) }}dt$
Separating the integration over $2t + 1$ and -1
$I = \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ (2t + 1)}}dt - \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ }}dt$
Let $\mathop I\nolimits_1 = \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ (2t + 1)}}dt$
Differentiation of $(\mathop t\nolimits^2 + 1 + t)$ i.e. $2t + 1$is present, hence simplify using substitution.
Take $(\mathop t\nolimits^2 + 1 + t) = \tau $
On differentiating both sides, we get
$\left( {2t + 1} \right)dt = d\tau $
On substituting, the integration becomes
$\mathop I\nolimits_1 = \smallint \mathop a\nolimits^2 \sqrt \tau d\tau $
Using integration: \[\int {{x^n}} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
\[
\Rightarrow \mathop a\nolimits^2 \dfrac{{\mathop \tau \nolimits^{\dfrac{1}{2} + 1} }}{{\dfrac{1}{2} + 1}} + \mathop c\nolimits_1 \\
\Rightarrow \mathop a\nolimits^2 \dfrac{{\mathop \tau \nolimits^{\dfrac{3}{2}} }}{{\dfrac{3}{2}}} + \mathop c\nolimits_1 \\
\]
Here, $\mathop c\nolimits_1 $ is constant of integration
$ \Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop \tau \nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 $
Now, substituting back (t, x,) what we have let so far.
We know, $\tau = (\mathop t\nolimits^2 + 1 + t)$
$ \Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {(\mathop t\nolimits^2 + t + 1)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 $
We know, $t = \tan \theta $
${I_1} = \dfrac{2}{3}\mathop a\nolimits^2 \mathop {(\mathop {\tan }\nolimits^2 \theta + \tan \theta + 1)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 $
We know, $x = a\mathop {\sec }\nolimits^2 \theta $
\[
\Rightarrow \dfrac{x}{a} = \mathop {\sec }\nolimits^2 \theta \\
\Rightarrow \dfrac{x}{a} = \mathop {\tan }\nolimits^2 \theta + 1 \\
\Rightarrow \mathop {\tan }\nolimits^2 \theta = \dfrac{x}{a} - 1 \\
\Rightarrow \mathop {\tan }\nolimits^2 \theta = \dfrac{{x - a}}{a}{\text{ }}......{\text{ (1)}} \\
\Rightarrow \tan \theta = \sqrt {\dfrac{{x - a}}{a}} \\
\Rightarrow \tan \theta = \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}{\text{ }}......{\text{ (2)}} \\
\]
On substituting the values of $\mathop {\tan }\nolimits^2 \theta $ and $\tan \theta $ in $\mathop I\nolimits_1 $, we get
$\mathop I\nolimits_1 = \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\left( {\dfrac{{x - a}}{a} + \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a} + 1} \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 $
Canceling a which is common in numerator and denominator
\[ \Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\left( {\dfrac{{a(x - a)}}{{\mathop a\nolimits^2 }} + \dfrac{{a\sqrt {ax - \mathop a\nolimits^2 } }}{{\mathop a\nolimits^2 }} + 1} \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 \]
Taking LCM ${a^2}$ and simplifying.
\[
\Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\left( {\dfrac{{ax - \mathop a\nolimits^2 + a\sqrt {ax - \mathop a\nolimits^2 } + \mathop a\nolimits^2 }}{{\mathop a\nolimits^2 }}} \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 \\
\Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \mathop {\dfrac{{\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} }}{{\mathop a\nolimits^{2 \times \dfrac{3}{2}} }}}\nolimits^{} + \mathop c\nolimits_1 \\
\Rightarrow \dfrac{2}{3}\mathop a\nolimits^2 \dfrac{{\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} }}{{\mathop a\nolimits^3 }} + \mathop c\nolimits_1 \\
\]
\[\mathop I\nolimits_1 = \dfrac{2}{{3a}}\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 \]
Let $\mathop I\nolimits_2 = \smallint \mathop a\nolimits^2 \sqrt {(\mathop t\nolimits^2 + 1 + t)} {\text{ }}dt$
Convert the quadratic equation $(\mathop t\nolimits^2 + t + 1)$in the form of \[\mathop {(a + b)}\nolimits^2 \]
$
(\mathop t\nolimits^2 + t + 1) = (\mathop t\nolimits^2 + t + 1 + \dfrac{1}{4} - \dfrac{1}{4}) \\
{\text{ }} = (\mathop t\nolimits^2 + t + \mathop {(\dfrac{1}{2})}\nolimits^2 + \dfrac{3}{4}) \\
{\text{ }} = [\mathop {(t + \dfrac{1}{2})}\nolimits^2 + \dfrac{3}{4}] \\
$
On substituting, the integration becomes
$\mathop I\nolimits_2 = \smallint \mathop a\nolimits^2 \sqrt {\left[ {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \dfrac{3}{4}} \right]} {\text{ }}dt$
$ \Rightarrow \mathop a\nolimits^2 \int {\sqrt {\left[ {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \mathop {\left( {\dfrac{{\sqrt 3 }}{2}} \right)}\nolimits^2 } \right]} {\text{ }}dt} $
Using the special integration of type \[\int {\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } } \]
\[\int {\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } } dx = \dfrac{1}{2}x\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } + \dfrac{{\mathop b\nolimits^2 }}{2}\log \left| {x + \sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } } \right| + C\]
On comparing : $x = t + \dfrac{1}{2};{\text{ }}b = \dfrac{{\sqrt 3 }}{2}$
Hence, \[\mathop I\nolimits_2 = \dfrac{{\mathop a\nolimits^2 }}{2}\left( {t + \dfrac{1}{2}} \right)\sqrt {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \dfrac{3}{4}} + \dfrac{{\mathop a\nolimits^2 3}}{8}\log \left| {\left( {t + \dfrac{1}{2}} \right) + \sqrt {\mathop {\left( {t + \dfrac{1}{2}} \right)}\nolimits^2 + \dfrac{3}{4}} } \right| + C\]
Simplifying the expressions under the square-roots
\[
\Rightarrow \dfrac{{\mathop a\nolimits^2 }}{2}\left( {t + \dfrac{1}{2}} \right)\sqrt {(\mathop t\nolimits^2 + t + 1)} + \dfrac{{\mathop a\nolimits^2 3}}{8}\log \left| {\left( {t + \dfrac{1}{2}} \right) + \sqrt {(\mathop t\nolimits^2 + t + 1)} } \right| + \mathop c\nolimits_2 \\
\Rightarrow \dfrac{{\mathop a\nolimits^2 }}{4}\left( {2t + 1} \right)\sqrt {(\mathop t\nolimits^2 + t + 1)} + \dfrac{{\mathop a\nolimits^2 3}}{8}\log \left| {\left( {t + \dfrac{1}{2}} \right) + \sqrt {(\mathop t\nolimits^2 + t + 1)} } \right| + \mathop c\nolimits_2 \\
\]
Now, substituting back (t, x,) what we have let so far.
We know, $t = \tan \theta $
\[\tan \theta = \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}{\text{ }}\]
Hence, \[t = \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}{\text{ }}\]
\[(\mathop t\nolimits^2 + t + 1) = \mathop {\left( {\dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a}} \right)}\nolimits^2 + \dfrac{{\sqrt {ax - \mathop a\nolimits^2 } }}{a} + 1\]
Simplify taking LCM ${a^2}$
\[
= \dfrac{{ax - \mathop a\nolimits^2 + a\sqrt {ax - \mathop a\nolimits^2 } + \mathop a\nolimits^2 }}{{\mathop a\nolimits^2 }} \\
= \dfrac{{ax + a\sqrt {ax - \mathop a\nolimits^2 } }}{{\mathop a\nolimits^2 }} \\
\]
On substituting values of $t$ and \[(\mathop t\nolimits^2 + t + 1)\] integration $\mathop I\nolimits_2 $,
\[{I_2} = \dfrac{{{a^2}}}{4}\left[ {\left( {\dfrac{{2\sqrt {ax - {a^2}} }}{a} + 1} \right)\sqrt {\dfrac{{ax + a\sqrt {ax - {a^2}} }}{{{a^2}}}} } \right] + \dfrac{{3{a^3}}}{8}\log \left[ {\dfrac{{\sqrt {ax - {a^2}} }}{a} + \dfrac{1}{2} + \sqrt {\dfrac{{ax + a\sqrt {ax - {a^2}} }}{{{a^2}}}} } \right] + {c_2}\]
Cancel the common terms of numerator and denominator, in the second term the denominator 2a.
\[ \Rightarrow \dfrac{{{{{a^2}}}}}{4}\left[ {\left( {\dfrac{{2\sqrt {ax - {a^2}} + a}}{{{a}}}} \right)\dfrac{{\sqrt {ax + a\sqrt {ax - {a^2}} } }}{{{a}}}} \right] + \dfrac{{3{a^3}}}{8}\log \left[ {\dfrac{{2\sqrt {ax - {a^2}} }}{{2a}} + \dfrac{a}{{2a}} + \dfrac{{2\sqrt {ax + a\sqrt {ax - {a^2}} } }}{{2a}}} \right] + {c_2}\]
Using the property of logarithm:
$\log \dfrac{a}{b} = \log a - \log b$
\[ \Rightarrow \left[ {\dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] - \dfrac{{3{a^2}}}{8}\log (2a) + {c_2}\]
The term \[\left( { - \dfrac{{3{a^2}}}{8}\log (2a)} \right)\] is constant, therefore combine it with integration constant ${c_2}$.
\[ \Rightarrow \dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + \mathop c\nolimits_3 \]
Where $\mathop c\nolimits_3 $ is the integration of constants
We know, $I = \mathop I\nolimits_1 + \mathop I\nolimits_2 $
\[\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx\]
\[ = \dfrac{2}{{3a}}\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} + \mathop c\nolimits_1 \] \[ + \dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + \mathop c\nolimits_3 \]
\[ = \dfrac{2}{{3a}}\mathop {\left( {ax + a\sqrt {ax - \mathop a\nolimits^2 } } \right)}\nolimits^{\dfrac{3}{2}} \; + \dfrac{{2\sqrt {ax - {a^2}} + a}}{4}\sqrt {ax + a\sqrt {ax - {a^2}} } + \dfrac{{3{a^2}}}{8}\log \left[ {2\sqrt {ax - {a^2}} + a + 2\sqrt {ax + a\sqrt {ax - {a^2}} } } \right] + c\]
Where $c = {c_1} + {c_3}$
On comparing with the given solution:
\[\smallint \sqrt {ax + a\sqrt {ax - \mathop a\nolimits^2 } } dx,0 < a < 2 = \dfrac{2}{{3a}}\mathop {\{ ax + a\sqrt {ax - \mathop a\nolimits^2 } \} }\nolimits^{\dfrac{3}{2}} - \dfrac{{\sqrt a }}{2}\left| {A + B} \right| + c.\]
For the values of A and B options (B) and (C) is correct.
Final answer: For the values of A and B options (B) and (C) are correct.
Note: Carefully do the calculation, emphasize on each and every step. Especially while substituting the values of ${I_1}$ and ${I_2}$
For instance, while using the special integration of particular functions of type \[\int {\sqrt {\mathop x\nolimits^2 + \mathop b\nolimits^2 } } \],
Compare with the integral judiciously, $\mathop {\left( x \right)}\nolimits^2 $ implies the whole square of variable function and
\[\mathop {\left( b \right)}\nolimits^2 \] implies the whole square of constant function.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

