
If ${S_m} = {S_n}$ for some A.P, then prove that ${S_{m + n}} = 0$.
Answer
570.6k+ views
Hint:
We will write the sum of first $m$ and $n$ terms of A.P. and then put them equal. Simplify the expression and find the value of $2a$. Then, write the expression of ${S_{m + n}}$ and substitute the value of $2a$ and solve the equation further.
Complete step by step solution:
We are given that ${S_m} = {S_n}$
Let the first term of the A.P. is $a$ and let the common difference of the A.P. is $d$, then
${S_m} = \dfrac{m}{2}\left( {2a + \left( {m - 1} \right)d} \right)$ and
${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
From the given condition,
$\dfrac{m}{2}\left( {2a + \left( {m - 1} \right)d} \right) = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)0$
On simplifying it whether, we will get,
$
m\left( {2a + \left( {m - 1} \right)d} \right) = n\left( {2a + \left( {n - 1} \right)d} \right) \\
\Rightarrow 2am + \left( {m - 1} \right)md = 2an\left( {n - 1} \right)md
$
Now, we will put like terms together,
$
2am - 2an = \left( {n - 1} \right)nd - \left( {m - 1} \right)md \\
\Rightarrow 2a\left( {m - n} \right) = d\left( {{n^2} - n - {m^2} + m} \right) \\
\Rightarrow 2a\left( {m - n} \right) = d\left( {{n^2} - {m^2} - n + m} \right)
$
Apply the formula, ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$
$
2a\left( {m - n} \right) = d\left( { - \left( {m + n} \right)\left( {m - n} \right) - \left( {m + n} \right)} \right) \\
\Rightarrow 2a\left( {m - n} \right) = d\left( {m - n} \right)\left( {1 - m - n} \right) \\
\Rightarrow 2a = d\left( {1 - m - n} \right)
$
We have to find the value of ${S_{m + n}}$ which is also equal to ${S_{m + n}} = \dfrac{{m + n}}{2}\left( {2a + \left( {m + n - 1} \right)d} \right)$
We will now substitute the value of $2a$ in the above equation.
$
{S_{m + n}} = \dfrac{{m + n}}{2}\left( {d\left( {1 - m - n} \right) + \left( {m + n - 1} \right)d} \right) \\
\Rightarrow {S_{m + n}} = \dfrac{{m + n}}{2}\left( {d - dm - dn + dm + dn - d} \right) \\
\Rightarrow {S_{m + n}} = \dfrac{{m + n}}{2}\left( 0 \right) \\
\Rightarrow {S_{m + n}} = 0
$
Hence, the sum of ${S_{m + n}}$ is 0.
Note:
In an A.P., the sequence is of type $a,a + d,a + 2d,a + 3d,......$. The ${n^{th}}$ term of the sequence is given as ${a_n} = a + \left( {n - 1} \right)d$. And the sum of $n$ terms of sequence is given by $\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ and $\dfrac{n}{2}\left( {a + {a_n}} \right)$
We will write the sum of first $m$ and $n$ terms of A.P. and then put them equal. Simplify the expression and find the value of $2a$. Then, write the expression of ${S_{m + n}}$ and substitute the value of $2a$ and solve the equation further.
Complete step by step solution:
We are given that ${S_m} = {S_n}$
Let the first term of the A.P. is $a$ and let the common difference of the A.P. is $d$, then
${S_m} = \dfrac{m}{2}\left( {2a + \left( {m - 1} \right)d} \right)$ and
${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
From the given condition,
$\dfrac{m}{2}\left( {2a + \left( {m - 1} \right)d} \right) = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)0$
On simplifying it whether, we will get,
$
m\left( {2a + \left( {m - 1} \right)d} \right) = n\left( {2a + \left( {n - 1} \right)d} \right) \\
\Rightarrow 2am + \left( {m - 1} \right)md = 2an\left( {n - 1} \right)md
$
Now, we will put like terms together,
$
2am - 2an = \left( {n - 1} \right)nd - \left( {m - 1} \right)md \\
\Rightarrow 2a\left( {m - n} \right) = d\left( {{n^2} - n - {m^2} + m} \right) \\
\Rightarrow 2a\left( {m - n} \right) = d\left( {{n^2} - {m^2} - n + m} \right)
$
Apply the formula, ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$
$
2a\left( {m - n} \right) = d\left( { - \left( {m + n} \right)\left( {m - n} \right) - \left( {m + n} \right)} \right) \\
\Rightarrow 2a\left( {m - n} \right) = d\left( {m - n} \right)\left( {1 - m - n} \right) \\
\Rightarrow 2a = d\left( {1 - m - n} \right)
$
We have to find the value of ${S_{m + n}}$ which is also equal to ${S_{m + n}} = \dfrac{{m + n}}{2}\left( {2a + \left( {m + n - 1} \right)d} \right)$
We will now substitute the value of $2a$ in the above equation.
$
{S_{m + n}} = \dfrac{{m + n}}{2}\left( {d\left( {1 - m - n} \right) + \left( {m + n - 1} \right)d} \right) \\
\Rightarrow {S_{m + n}} = \dfrac{{m + n}}{2}\left( {d - dm - dn + dm + dn - d} \right) \\
\Rightarrow {S_{m + n}} = \dfrac{{m + n}}{2}\left( 0 \right) \\
\Rightarrow {S_{m + n}} = 0
$
Hence, the sum of ${S_{m + n}}$ is 0.
Note:
In an A.P., the sequence is of type $a,a + d,a + 2d,a + 3d,......$. The ${n^{th}}$ term of the sequence is given as ${a_n} = a + \left( {n - 1} \right)d$. And the sum of $n$ terms of sequence is given by $\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ and $\dfrac{n}{2}\left( {a + {a_n}} \right)$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

