
If \[S\left( n \right)={{i}^{n}}+{{i}^{-n}}\], where \[i=\sqrt{-1}\] and n is an integer, then the total number of distinct values of S (n) is
(a) 1
(b) 2
(c) 3
(d) 4
Answer
612.6k+ views
Hint: Find the value of \[{{i}^{-n}}\], multiply (i) to it and get the value. Substitute in S (n) and simplify it. Take the care when n is odd and even. In case of even finding where 4 is a multiple and not a multiple of n. Thus find the values of S (n).
Complete step-by-step answer:
We have been given the expression, \[S\left( n \right)={{i}^{n}}+{{i}^{-n}}-(1)\]
We know the basics of complex number’s as,
\[i=i,{{i}^{2}}=-1,{{i}^{3}}=-1\] and \[{{i}^{4}}=-1\].
Now, \[{{i}^{-n}}\] can be written as \[\dfrac{1}{{{i}^{n}}}\].
\[{{i}^{n}}=\dfrac{1}{{{i}^{n}}}={{\left( \dfrac{1}{i} \right)}^{n}}\]
Now in the above expression let us multiply by ‘i’ in the numerator and denominator.
\[\therefore {{\left( \dfrac{1}{i} \right)}^{n}}={{\left( \dfrac{1\times i}{i\times i} \right)}^{n}}={{\left( \dfrac{i}{{{i}^{2}}} \right)}^{n}}\]
We discussed above that, \[i=i\] and \[{{i}^{2}}=-1\].
Thus, \[{{\left( \dfrac{i}{{{i}^{2}}} \right)}^{n}}={{\left( \dfrac{i}{-1} \right)}^{n}}\]
i.e. \[\dfrac{1}{{{i}^{n}}}={{\left( \dfrac{i}{-1} \right)}^{n}}={{\left( -i \right)}^{n}}\]
Thus, we got the value of \[{{i}^{-n}}\] as \[{{\left( -i \right)}^{n}}\].
\[{{i}^{-n}}={{\left( -i \right)}^{n}}\]
Now let us substitute the value of \[{{i}^{-n}}\] in (1).
\[\begin{align}
& {{S}_{n}}={{i}^{n}}+{{i}^{-n}} \\
& {{S}_{n}}={{i}^{n}}+{{\left( -i \right)}^{n}} \\
& {{S}_{n}}={{i}^{n}}+{{\left( \left( -1 \right)\times i \right)}^{n}} \\
\end{align}\]
\[{{S}_{n}}={{i}^{n}}+{{\left( -1 \right)}^{n}}\times {{\left( i \right)}^{n}}\] , Now take \[{{i}^{n}}\] common.
\[{{S}_{n}}={{i}^{n}}\left[ 1+{{\left( -1 \right)}^{n}} \right]\]
If n is odd, then \[{{S}_{n}}=0\].
For example if n = 3, \[{{S}_{n}}={{i}^{3}}\left[ 1+{{\left( -1 \right)}^{3}} \right]\]
\[{{S}_{n}}={{i}^{3}}\left[ 1-1 \right]={{i}^{3}}\times 0=0\]
Thus for n = 3, we got \[{{S}_{n}}=0\].
Thus when n is odd, \[{{S}_{n}}=0\].
If n is even, then let's find out what happens.
Let us consider n as a multiple of 4, because \[{{i}^{4}}=1\], thus to get an even positive value we need to consider n as 4.
\[\therefore {{S}_{n}}={{i}^{4}}\left[ 1+{{\left( -1 \right)}^{4}} \right]=1\left[ 1+1 \right]=2\]
Now if n is not a multiple of 4, let us take 6.
\[\therefore {{S}_{n}}={{i}^{6}}\left[ 1+{{\left( -1 \right)}^{6}} \right]=-1\left( 1+1 \right)=-1\times 2=-2\]
Thus, for even we got 2 distinct values 2 and -2.
Thus we have a total of 3 distinct values of \[{{S}_{n}}=-2,0,2\].
\[\therefore \] Option (c) is the correct answer.
Note: It is important that you simplify and get the value of \[{{i}^{-n}}\]. It is said that n is an integer. It can be odd or even positive or negative. Thus remember to find the cases when n is odd and even to get the distinct values of S (n).
Complete step-by-step answer:
We have been given the expression, \[S\left( n \right)={{i}^{n}}+{{i}^{-n}}-(1)\]
We know the basics of complex number’s as,
\[i=i,{{i}^{2}}=-1,{{i}^{3}}=-1\] and \[{{i}^{4}}=-1\].
Now, \[{{i}^{-n}}\] can be written as \[\dfrac{1}{{{i}^{n}}}\].
\[{{i}^{n}}=\dfrac{1}{{{i}^{n}}}={{\left( \dfrac{1}{i} \right)}^{n}}\]
Now in the above expression let us multiply by ‘i’ in the numerator and denominator.
\[\therefore {{\left( \dfrac{1}{i} \right)}^{n}}={{\left( \dfrac{1\times i}{i\times i} \right)}^{n}}={{\left( \dfrac{i}{{{i}^{2}}} \right)}^{n}}\]
We discussed above that, \[i=i\] and \[{{i}^{2}}=-1\].
Thus, \[{{\left( \dfrac{i}{{{i}^{2}}} \right)}^{n}}={{\left( \dfrac{i}{-1} \right)}^{n}}\]
i.e. \[\dfrac{1}{{{i}^{n}}}={{\left( \dfrac{i}{-1} \right)}^{n}}={{\left( -i \right)}^{n}}\]
Thus, we got the value of \[{{i}^{-n}}\] as \[{{\left( -i \right)}^{n}}\].
\[{{i}^{-n}}={{\left( -i \right)}^{n}}\]
Now let us substitute the value of \[{{i}^{-n}}\] in (1).
\[\begin{align}
& {{S}_{n}}={{i}^{n}}+{{i}^{-n}} \\
& {{S}_{n}}={{i}^{n}}+{{\left( -i \right)}^{n}} \\
& {{S}_{n}}={{i}^{n}}+{{\left( \left( -1 \right)\times i \right)}^{n}} \\
\end{align}\]
\[{{S}_{n}}={{i}^{n}}+{{\left( -1 \right)}^{n}}\times {{\left( i \right)}^{n}}\] , Now take \[{{i}^{n}}\] common.
\[{{S}_{n}}={{i}^{n}}\left[ 1+{{\left( -1 \right)}^{n}} \right]\]
If n is odd, then \[{{S}_{n}}=0\].
For example if n = 3, \[{{S}_{n}}={{i}^{3}}\left[ 1+{{\left( -1 \right)}^{3}} \right]\]
\[{{S}_{n}}={{i}^{3}}\left[ 1-1 \right]={{i}^{3}}\times 0=0\]
Thus for n = 3, we got \[{{S}_{n}}=0\].
Thus when n is odd, \[{{S}_{n}}=0\].
If n is even, then let's find out what happens.
Let us consider n as a multiple of 4, because \[{{i}^{4}}=1\], thus to get an even positive value we need to consider n as 4.
\[\therefore {{S}_{n}}={{i}^{4}}\left[ 1+{{\left( -1 \right)}^{4}} \right]=1\left[ 1+1 \right]=2\]
Now if n is not a multiple of 4, let us take 6.
\[\therefore {{S}_{n}}={{i}^{6}}\left[ 1+{{\left( -1 \right)}^{6}} \right]=-1\left( 1+1 \right)=-1\times 2=-2\]
Thus, for even we got 2 distinct values 2 and -2.
Thus we have a total of 3 distinct values of \[{{S}_{n}}=-2,0,2\].
\[\therefore \] Option (c) is the correct answer.
Note: It is important that you simplify and get the value of \[{{i}^{-n}}\]. It is said that n is an integer. It can be odd or even positive or negative. Thus remember to find the cases when n is odd and even to get the distinct values of S (n).
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

