
If \[sin\left( {A - B} \right) = sinAcosB-cosAsinB\] and \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]. Find the values of $\sin {15^ \circ }$ and $\cos {15^ \circ }$.
Answer
569.1k+ views
Hint: Start by assuming two trigonometric angles whose difference would be 15 and we already know the corresponding values of their cos and sin . Substitute all these values into the given formula and find the required value.
Complete step-by-step answer:
Given,
$sin\left( {A - B} \right) = sinAcosB-cosAsinB\] and \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$.
Let the angle $A = {45^ \circ }$ and $B = {30^ \circ }$
Now putting these angles in the equation, we get
$sin\left( {A - B} \right) = sinAcosB—cosAsinB$
$ \Rightarrow sin\left( {{{45}^ \circ } - {{30}^ \circ }} \right) = sin{45^ \circ }cos{30^ \circ }-cos{45^ \circ }sin{30^ \circ }$
$\because \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\;and\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$,$\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\;and\sin {30^ \circ } = \dfrac{1}{2}$
Substituting these values , we get
$\Rightarrow \sin {15^ \circ } = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}$
On further simplification , we get
$\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Similarly , we will try to find $\cos {15^ \circ }$.
So ,Now putting the same angles in the equation \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\] , we get
$\cos \left( {{{45}^ \circ } - {{30}^ \circ }} \right) = \cos {45^ \circ }cos{30^ \circ } + \sin {45^ \circ }sin{30^ \circ }$
$\because \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\;and\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$,$\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\;and\sin {30^ \circ } = \dfrac{1}{2}$
Substituting these values, we get
$ \Rightarrow \cos {15^ \circ } = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}$
On further simplification, we get
$\cos {15^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
Therefore, The values of $\sin {15^ \circ }$ and $\cos {15^ \circ }$are $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$and $\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$ respectively.
Note: Similar question can be asked for different other angles such as ${22.5^ \circ }$ etc. Students must also know all the double angles and half angles formula which facilitates finding some extraordinary angles. All the values must be substituted correctly otherwise would lead to wrong answers only.
Complete step-by-step answer:
Given,
$sin\left( {A - B} \right) = sinAcosB-cosAsinB\] and \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$.
Let the angle $A = {45^ \circ }$ and $B = {30^ \circ }$
Now putting these angles in the equation, we get
$sin\left( {A - B} \right) = sinAcosB—cosAsinB$
$ \Rightarrow sin\left( {{{45}^ \circ } - {{30}^ \circ }} \right) = sin{45^ \circ }cos{30^ \circ }-cos{45^ \circ }sin{30^ \circ }$
$\because \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\;and\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$,$\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\;and\sin {30^ \circ } = \dfrac{1}{2}$
Substituting these values , we get
$\Rightarrow \sin {15^ \circ } = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}$
On further simplification , we get
$\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Similarly , we will try to find $\cos {15^ \circ }$.
So ,Now putting the same angles in the equation \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\] , we get
$\cos \left( {{{45}^ \circ } - {{30}^ \circ }} \right) = \cos {45^ \circ }cos{30^ \circ } + \sin {45^ \circ }sin{30^ \circ }$
$\because \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\;and\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2}$,$\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\;and\sin {30^ \circ } = \dfrac{1}{2}$
Substituting these values, we get
$ \Rightarrow \cos {15^ \circ } = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}$
On further simplification, we get
$\cos {15^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$
Therefore, The values of $\sin {15^ \circ }$ and $\cos {15^ \circ }$are $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$and $\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}$ respectively.
Note: Similar question can be asked for different other angles such as ${22.5^ \circ }$ etc. Students must also know all the double angles and half angles formula which facilitates finding some extraordinary angles. All the values must be substituted correctly otherwise would lead to wrong answers only.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

