
If $ \sin x + \sin y = \dfrac{3}{4} $ and $ \sin x - \sin y = \dfrac{2}{5} $ , then $ \dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}} = ? $
(A) $ \dfrac{{15}}{8} $
(B) $ \dfrac{8}{{15}} $
(C) $ \dfrac{3}{{10}} $
(D) $ \dfrac{{10}}{3} $
Answer
559.5k+ views
Hint: Use the transformation formulae of $ \sin x \pm \sin y $ . Then divide both the equations to write then in terms of tan. Then substitute the given values in the equation you get to solve the question. Be careful about the division of the fractions while solving it.
Complete step-by-step answer:
By using the transformation formulae, we can write
$ \sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ . . . (1)
and
$ \sin x - \sin y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right) $ . . . (2)
By dividing equation (2) by equation (1), we get
\[\dfrac{{\sin x - \sin y}}{{\sin x + \sin y}} = \dfrac{{2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)}}{{2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)}}\]
By cancelling the common terms and rearranging it, we can write
\[\dfrac{{\sin x - \sin y}}{{\sin x + \sin y}} = \dfrac{{\sin \left( {\dfrac{{x - y}}{2}} \right)}}{{\cos \left( {\dfrac{{x - y}}{2}} \right)}} \times \dfrac{1}{{\dfrac{{\sin \left( {\dfrac{{x + y}}{2}} \right)}}{{\cos \left( {\dfrac{{x + y}}{2}} \right)}}}}\] \[\left( {\because x = \dfrac{1}{{\dfrac{1}{x}}}} \right)\]
We know that,
$ \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $
Using this property, we can write the above equation as
\[\dfrac{{\sin x - \sin y}}{{\sin x + \sin y}} = \dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}}\]
Now, it is given in the question that,
$ \sin x - \sin y = \dfrac{2}{5} $
$ \sin x + \sin y = \dfrac{3}{4} $
Substituting the given values in the above equation. We get
\[\dfrac{{\dfrac{2}{5}}}{{\dfrac{3}{4}}} = \dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}}\]
Rearranging it we can write
\[\dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}} = \dfrac{{2 \times 4}}{{5 \times 3}}\] $ \left( {\because \dfrac{{\dfrac{a}{b}}}{{\dfrac{p}{q}}} = \dfrac{a}{b} \times \dfrac{q}{p}} \right) $
$ \Rightarrow \dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}} = \dfrac{8}{{15}} $
Therefore, from the above explanation, the correct answer is, option (B) $ \dfrac{8}{{15}} $
So, the correct answer is “Option B”.
Note: The key point of this question was to remember the transformation formula. It is not that you won’t be able to solve this question without the transformation formula. The alternative would be to right tan in terms of sin and cos and then expand $ \sin (x \pm y) $ and $ \cos (x \pm y) $ . The simplify the equation formed until it looks at the form that is given in the question. And then substitute the values in it to get the answer. This would be a long method. Knowing transformation formulae made it look short and easy.
Complete step-by-step answer:
By using the transformation formulae, we can write
$ \sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) $ . . . (1)
and
$ \sin x - \sin y = 2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right) $ . . . (2)
By dividing equation (2) by equation (1), we get
\[\dfrac{{\sin x - \sin y}}{{\sin x + \sin y}} = \dfrac{{2\cos \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{x - y}}{2}} \right)}}{{2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)}}\]
By cancelling the common terms and rearranging it, we can write
\[\dfrac{{\sin x - \sin y}}{{\sin x + \sin y}} = \dfrac{{\sin \left( {\dfrac{{x - y}}{2}} \right)}}{{\cos \left( {\dfrac{{x - y}}{2}} \right)}} \times \dfrac{1}{{\dfrac{{\sin \left( {\dfrac{{x + y}}{2}} \right)}}{{\cos \left( {\dfrac{{x + y}}{2}} \right)}}}}\] \[\left( {\because x = \dfrac{1}{{\dfrac{1}{x}}}} \right)\]
We know that,
$ \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $
Using this property, we can write the above equation as
\[\dfrac{{\sin x - \sin y}}{{\sin x + \sin y}} = \dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}}\]
Now, it is given in the question that,
$ \sin x - \sin y = \dfrac{2}{5} $
$ \sin x + \sin y = \dfrac{3}{4} $
Substituting the given values in the above equation. We get
\[\dfrac{{\dfrac{2}{5}}}{{\dfrac{3}{4}}} = \dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}}\]
Rearranging it we can write
\[\dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}} = \dfrac{{2 \times 4}}{{5 \times 3}}\] $ \left( {\because \dfrac{{\dfrac{a}{b}}}{{\dfrac{p}{q}}} = \dfrac{a}{b} \times \dfrac{q}{p}} \right) $
$ \Rightarrow \dfrac{{\tan \left( {\dfrac{{x - y}}{2}} \right)}}{{\tan \left( {\dfrac{{x + y}}{2}} \right)}} = \dfrac{8}{{15}} $
Therefore, from the above explanation, the correct answer is, option (B) $ \dfrac{8}{{15}} $
So, the correct answer is “Option B”.
Note: The key point of this question was to remember the transformation formula. It is not that you won’t be able to solve this question without the transformation formula. The alternative would be to right tan in terms of sin and cos and then expand $ \sin (x \pm y) $ and $ \cos (x \pm y) $ . The simplify the equation formed until it looks at the form that is given in the question. And then substitute the values in it to get the answer. This would be a long method. Knowing transformation formulae made it look short and easy.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

