
If \[\sin x + \sin 3x + \sin 5x = 0\] , then the solution is?
Answer
567k+ views
Hint:
We are given \[sinx + sin3x + sin5x = 0\] and we are trying to find the value of x. We use the formula of \[\sin a + \sin b = 2\sin \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\] on \[\sin 5x + \sin x\] we get answer in terms of \[\sin 3x\]. Next, we take \[\sin 3x\]common and then equating it with zero we find our solution.
Complete step by step solution:
\[\sin x + \sin 3x + \sin 5x = 0\]
Taking two terms together, we get,
\[ \Rightarrow \left( {\sin 5x + \sin x} \right) + \sin 3x = 0\]
Again, we have, \[\sin a + \sin b = 2\sin \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\] , using, this we get,
\[ \Rightarrow 2sin3xcos2x + sin3x = 0\]
Taking, \[\sin 3x\] common, we get,
\[ \Rightarrow sin3x\left( {2cos2x + 1} \right) = 0\]
Now,
\[\sin 3x = 0\;or\;2\cos 2x + 1 = 0\]
\[ \Rightarrow \sin 3x = 0\;or,\; \cos 2x = - \dfrac{1}{2}\]
Now, \[\;\sin 3x = 0 \Rightarrow 3x = n\pi \Rightarrow x = \dfrac{{n\pi }}{3},n \in Z\] as, \[\sin n\pi = 0\]
And, \[\;\cos 2x = - \dfrac{1}{2}\]
\[\cos 2x = \cos \dfrac{{2\pi }}{3}\] as, \[\cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}\]
\[ \Rightarrow 2x = 2m\pi \pm \dfrac{{2\pi }}{3},m \in Z\]
\[ \Rightarrow x = m\pi \pm \dfrac{\pi }{3},m \in Z\]
Hence, the general solution of the given equation is:
\[x = \dfrac{{n\pi }}{3}\] or, \[x = m\pi \pm \dfrac{\pi }{3}\] , where \[m,n \in Z\]
Note:
To find, \[\sin n\pi = 0\] , we get,
Recall that Euler's formula is \[{e^{ix}} = cosx + isinx\] , When \[x = \pi \] ,
we have \[{e^{i\pi }} = cos\pi + isin\pi = - 1\] \[ \Rightarrow {e^{i\pi }} + 1 = 0\]
This implies that \[\sin n\pi = 0\] for all \[n \in \mathbb{Z}\].
We are given \[sinx + sin3x + sin5x = 0\] and we are trying to find the value of x. We use the formula of \[\sin a + \sin b = 2\sin \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\] on \[\sin 5x + \sin x\] we get answer in terms of \[\sin 3x\]. Next, we take \[\sin 3x\]common and then equating it with zero we find our solution.
Complete step by step solution:
\[\sin x + \sin 3x + \sin 5x = 0\]
Taking two terms together, we get,
\[ \Rightarrow \left( {\sin 5x + \sin x} \right) + \sin 3x = 0\]
Again, we have, \[\sin a + \sin b = 2\sin \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\] , using, this we get,
\[ \Rightarrow 2sin3xcos2x + sin3x = 0\]
Taking, \[\sin 3x\] common, we get,
\[ \Rightarrow sin3x\left( {2cos2x + 1} \right) = 0\]
Now,
\[\sin 3x = 0\;or\;2\cos 2x + 1 = 0\]
\[ \Rightarrow \sin 3x = 0\;or,\; \cos 2x = - \dfrac{1}{2}\]
Now, \[\;\sin 3x = 0 \Rightarrow 3x = n\pi \Rightarrow x = \dfrac{{n\pi }}{3},n \in Z\] as, \[\sin n\pi = 0\]
And, \[\;\cos 2x = - \dfrac{1}{2}\]
\[\cos 2x = \cos \dfrac{{2\pi }}{3}\] as, \[\cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}\]
\[ \Rightarrow 2x = 2m\pi \pm \dfrac{{2\pi }}{3},m \in Z\]
\[ \Rightarrow x = m\pi \pm \dfrac{\pi }{3},m \in Z\]
Hence, the general solution of the given equation is:
\[x = \dfrac{{n\pi }}{3}\] or, \[x = m\pi \pm \dfrac{\pi }{3}\] , where \[m,n \in Z\]
Note:
To find, \[\sin n\pi = 0\] , we get,
Recall that Euler's formula is \[{e^{ix}} = cosx + isinx\] , When \[x = \pi \] ,
we have \[{e^{i\pi }} = cos\pi + isin\pi = - 1\] \[ \Rightarrow {e^{i\pi }} + 1 = 0\]
This implies that \[\sin n\pi = 0\] for all \[n \in \mathbb{Z}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

