
If \[\sin \theta = \dfrac{{\sqrt 3 }}{2}\] and \[\cos \phi = \dfrac{1}{{\sqrt 2 }}\]. Find the value of \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\].
Answer
572.1k+ views
Hint: Here, we will use the value \[\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}\] in the right side of the equation \[\sin \theta = \dfrac{{\sqrt 3 }}{2}\] and the value \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\] in the right side of the equation \[\cos\phi = \dfrac{1}{{\sqrt 2 }}\] to find the value of \[\theta \] and \[\phi \]. Then we will substitute these values in the equation, \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\] and then simplify to find the required value.
Complete step by step answer:
We are given that
\[\sin \theta = \dfrac{{\sqrt 3 }}{2}{\text{ ......eq.(1)}}\]
\[\cos \phi = \dfrac{1}{{\sqrt 2 }}{\text{ .......eq.(2)}}\].
Using the value \[\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}\] in the right side of the equation (1), we get
\[ \Rightarrow \sin \theta = \sin 60^\circ \]
Applying the \[{\sin ^{ - 1}}\] in the above equation, we get
\[ \Rightarrow {\sin ^{ - 1}}\sin \theta = {\sin ^{ - 1}}\sin 60^\circ \]
Using the trigonometric property, \[{\sin ^{ - 1}}\sin a = a\] in the above equation, we get
\[ \Rightarrow \theta = 60^\circ \]
Using the value \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\] in the right side of the equation (2), we get
\[ \Rightarrow \cos \phi = \cos 45^\circ \]
Applying the \[{\cos ^{ - 1}}\] in the above equation, we get
\[ \Rightarrow {\cos ^{ - 1}}\cos \phi = {\cos ^{ - 1}}\cos 45^\circ \]
Using the trigonometric property, \[{\cos ^{ - 1}}\cos a = a\] in the above equation, we get
\[ \Rightarrow \phi = 45^\circ \]
Substituting the value of \[\theta \] and \[\phi \] in the equation, \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\], we get
\[ \Rightarrow \dfrac{{\tan 60^\circ - \tan 45^\circ }}{{1 + \tan 60^\circ \cdot \tan 45^\circ }}\]
Using the trigonometric value, \[\tan 60^\circ = \sqrt 3 \] and \[\tan 45^\circ = 1\] in the above equation and then simplify, we get
\[
\Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 \cdot 1}} \\
\Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \\
\Rightarrow \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \\
\]
Multiplying the numerator and denominator by \[\sqrt 3 - 1\] in the above equation, we get
\[
\Rightarrow \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \cdot \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
\Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt {3 - 1} } \right)}} \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt {3 - 1} } \right)}} \\
\]
Using the value, \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] in numerator and \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] in denominator in the above equation, we get
\[
\Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} - 2 \cdot 1 \cdot \sqrt 2 + {1^2}}}{{{{\left( {\sqrt 3 } \right)}^2} - {1^2}}} \\
\Rightarrow \dfrac{{3 - 2\sqrt 2 + 1}}{{3 - 1}} \\
\Rightarrow \dfrac{{4 - 2\sqrt 2 }}{2} \\
\Rightarrow 2 - \sqrt 2 \\
\]
Thus, the required value is \[2 - \sqrt 2 \].
Note: In solving these types of questions, the key concept is to have a good understanding of the basic trigonometric values and learn how to use the values from trigonometric tables. Students should have a grasp of trigonometric values, for simplifying the given equation. Remember that \[\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\].
Complete step by step answer:
We are given that
\[\sin \theta = \dfrac{{\sqrt 3 }}{2}{\text{ ......eq.(1)}}\]
\[\cos \phi = \dfrac{1}{{\sqrt 2 }}{\text{ .......eq.(2)}}\].
Using the value \[\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}\] in the right side of the equation (1), we get
\[ \Rightarrow \sin \theta = \sin 60^\circ \]
Applying the \[{\sin ^{ - 1}}\] in the above equation, we get
\[ \Rightarrow {\sin ^{ - 1}}\sin \theta = {\sin ^{ - 1}}\sin 60^\circ \]
Using the trigonometric property, \[{\sin ^{ - 1}}\sin a = a\] in the above equation, we get
\[ \Rightarrow \theta = 60^\circ \]
Using the value \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\] in the right side of the equation (2), we get
\[ \Rightarrow \cos \phi = \cos 45^\circ \]
Applying the \[{\cos ^{ - 1}}\] in the above equation, we get
\[ \Rightarrow {\cos ^{ - 1}}\cos \phi = {\cos ^{ - 1}}\cos 45^\circ \]
Using the trigonometric property, \[{\cos ^{ - 1}}\cos a = a\] in the above equation, we get
\[ \Rightarrow \phi = 45^\circ \]
Substituting the value of \[\theta \] and \[\phi \] in the equation, \[\dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}\], we get
\[ \Rightarrow \dfrac{{\tan 60^\circ - \tan 45^\circ }}{{1 + \tan 60^\circ \cdot \tan 45^\circ }}\]
Using the trigonometric value, \[\tan 60^\circ = \sqrt 3 \] and \[\tan 45^\circ = 1\] in the above equation and then simplify, we get
\[
\Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 \cdot 1}} \\
\Rightarrow \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }} \\
\Rightarrow \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \\
\]
Multiplying the numerator and denominator by \[\sqrt 3 - 1\] in the above equation, we get
\[
\Rightarrow \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \cdot \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
\Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt {3 - 1} } \right)}} \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{\left( {\sqrt 3 + 1} \right)\left( {\sqrt {3 - 1} } \right)}} \\
\]
Using the value, \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] in numerator and \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] in denominator in the above equation, we get
\[
\Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} - 2 \cdot 1 \cdot \sqrt 2 + {1^2}}}{{{{\left( {\sqrt 3 } \right)}^2} - {1^2}}} \\
\Rightarrow \dfrac{{3 - 2\sqrt 2 + 1}}{{3 - 1}} \\
\Rightarrow \dfrac{{4 - 2\sqrt 2 }}{2} \\
\Rightarrow 2 - \sqrt 2 \\
\]
Thus, the required value is \[2 - \sqrt 2 \].
Note: In solving these types of questions, the key concept is to have a good understanding of the basic trigonometric values and learn how to use the values from trigonometric tables. Students should have a grasp of trigonometric values, for simplifying the given equation. Remember that \[\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}\] and \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

