
If $\sin \theta =\dfrac{8}{17}$, find other trigonometric ratios.
Answer
594k+ views
Hint:Assume that in the given function: $\sin \theta =\dfrac{8}{17}$, 8 is the length of perpendicular and 17 is the length of hypotenuse of a right angle triangle. Use Pythagoras theorem given by: $\text{hypotenuse}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicular}{{\text{r}}^{\text{2}}}$, to determine the length of the base of the right angle triangle. Now, find $\cos \theta $ by taking the ratio of base and hypotenuse. To find $\tan \theta $ take the ratio of $\sin \theta $ and $\cos \theta $. Take the reciprocal of $\sin \theta $, $\cos \theta $ and $\tan \theta $ to find the value of $\sec \theta $, $\cos ec\theta $ and $\cot \theta $ respectively.
Complete step-by-step answer:
We have been provided with the trigonometric ratio, $\sin \theta =\dfrac{8}{17}$.
We know that, $\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. Therefore, on comparing it with the above provided ratio, we have, 8 as the length of perpendicular and 17 as the length of hypotenuse of a right angle triangle.
Now, using Pythagoras theorem: $\text{hypotenus}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicula}{{\text{r}}^{\text{2}}}$, we get,
\[\begin{align}
& \text{bas}{{\text{e}}^{\text{2}}}=\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}} \\
& \Rightarrow \text{base}=\sqrt{\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{{{17}^{\text{2}}}-{{8}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{289-64} \\
& \Rightarrow \text{base}=\sqrt{225} \\
& \Rightarrow \text{base}=15 \\
\end{align}\]
We know that, $\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}$.
\[\Rightarrow \cos \theta =\dfrac{15}{17}\]
Also, $\tan \theta =\dfrac{\text{Perpendicular}}{\text{Base}}$
$\Rightarrow \tan \theta =\dfrac{8}{15}$
Now, take the reciprocal of $\sin \theta $, $\cos \theta $ and $\tan \theta $ to find the value of $\sec \theta $, $\cos ec\theta $ and $\cot \theta $ respectively.
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \Rightarrow \sec \theta =\dfrac{17}{15} \\
\end{align}$
$\begin{align}
& \cos ec\theta =\dfrac{1}{\sin \theta } \\
& \Rightarrow \cos ec\theta =\dfrac{17}{8} \\
\end{align}$
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \Rightarrow \cot \theta =\dfrac{15}{8} \\
\end{align}$
Note: Here, we have used Pythagoras theorem to determine the base of the triangle to find other trigonometric ratios. One may note that, $\sec \theta $ is the ratio of length of hypotenuse and base, $\cos ec\theta $ is the ratio of length of perpendicular and base, and $\cot \theta $ is the ratio of length of base and hypotenuse. So, these ratios can also be found without taking the reciprocals.We can solve the question by using trigonometric identities $\sin^2\theta+\cos^2\theta=1$, $1+\tan^2\theta=\sec^2\theta$ to find all other trigonometric ratios.
Complete step-by-step answer:
We have been provided with the trigonometric ratio, $\sin \theta =\dfrac{8}{17}$.
We know that, $\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. Therefore, on comparing it with the above provided ratio, we have, 8 as the length of perpendicular and 17 as the length of hypotenuse of a right angle triangle.
Now, using Pythagoras theorem: $\text{hypotenus}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicula}{{\text{r}}^{\text{2}}}$, we get,
\[\begin{align}
& \text{bas}{{\text{e}}^{\text{2}}}=\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}} \\
& \Rightarrow \text{base}=\sqrt{\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{{{17}^{\text{2}}}-{{8}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{289-64} \\
& \Rightarrow \text{base}=\sqrt{225} \\
& \Rightarrow \text{base}=15 \\
\end{align}\]
We know that, $\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}$.
\[\Rightarrow \cos \theta =\dfrac{15}{17}\]
Also, $\tan \theta =\dfrac{\text{Perpendicular}}{\text{Base}}$
$\Rightarrow \tan \theta =\dfrac{8}{15}$
Now, take the reciprocal of $\sin \theta $, $\cos \theta $ and $\tan \theta $ to find the value of $\sec \theta $, $\cos ec\theta $ and $\cot \theta $ respectively.
$\begin{align}
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \Rightarrow \sec \theta =\dfrac{17}{15} \\
\end{align}$
$\begin{align}
& \cos ec\theta =\dfrac{1}{\sin \theta } \\
& \Rightarrow \cos ec\theta =\dfrac{17}{8} \\
\end{align}$
$\begin{align}
& \cot \theta =\dfrac{1}{\tan \theta } \\
& \Rightarrow \cot \theta =\dfrac{15}{8} \\
\end{align}$
Note: Here, we have used Pythagoras theorem to determine the base of the triangle to find other trigonometric ratios. One may note that, $\sec \theta $ is the ratio of length of hypotenuse and base, $\cos ec\theta $ is the ratio of length of perpendicular and base, and $\cot \theta $ is the ratio of length of base and hypotenuse. So, these ratios can also be found without taking the reciprocals.We can solve the question by using trigonometric identities $\sin^2\theta+\cos^2\theta=1$, $1+\tan^2\theta=\sec^2\theta$ to find all other trigonometric ratios.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

