
If $\sin \theta =\dfrac{1}{2}$, show that $\left( 3\cos \theta -4{{\cos }^{3}}\theta \right)=0$.
Answer
607.8k+ views
Hint:Assume that in the given function: $\sin \theta =\dfrac{1}{2}$, 1 is the length of perpendicular and 2 is the length of hypotenuse of a right angle triangle. Use Pythagoras theorem given by: $\text{hypotenuse}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicular}{{\text{r}}^{\text{2}}}$, to determine the length of the base of the right angle triangle. Now, find $\cos \theta $ by taking the ratio of base and hypotenuse. Finally, substitute the value of $\cos \theta $ in the expression: $\left( 3\cos \theta -4{{\cos }^{3}}\theta \right)$ to get the result.
Complete step-by-step answer:
We have been provided with the trigonometric ratio, $\sin \theta =\dfrac{1}{2}$.
We know that, $\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. Therefore, on comparing it with the above provided ratio, we have, 1 as the length of perpendicular and 2 as the length of hypotenuse of a right angle triangle.
Now, using Pythagoras theorem: $\text{hypotenuse}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicular}{{\text{r}}^{\text{2}}}$, we get,
\[\begin{align}
& \text{bas}{{\text{e}}^{\text{2}}}=\text{hypotenuse}{{\text{e}}^{\text{2}}}-\text{perpendicular}{{\text{r}}^{\text{2}}} \\
& \Rightarrow \text{base}=\sqrt{\text{hypotenuse}{{\text{e}}^{\text{2}}}-\text{perpendicular}{{\text{r}}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{{{2}^{\text{2}}}-{{1}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{4-1} \\
& \Rightarrow \text{base}=\sqrt{3} \\
\end{align}\]
We know that, $\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}$.
$\Rightarrow \cos \theta =\dfrac{\sqrt{3}}{2}$
Here, we have to find the value of the expression: $\left( 3\cos \theta -4{{\cos }^{3}}\theta \right)$. Therefore, substituting the value of $\cos \theta $ in the expression, we get,
\[\begin{align}
& =3\times \dfrac{\sqrt{3}}{2}-4{{\left( \dfrac{\sqrt{3}}{2} \right)}^{3}} \\
& =\dfrac{3\sqrt{3}}{2}-4\times \dfrac{3\sqrt{3}}{8} \\
& =\dfrac{3\sqrt{3}}{2}-\dfrac{3\sqrt{3}}{2} \\
& =0 \\
\end{align}\]
Note: You may note that there is an alternate and easy method to solve this question. This requires the information relating to the values of trigonometric functions at some particular angles. We know that the value of $\sin {{30}^{\circ }}=\dfrac{1}{2}$, on comparing it with the information given in the question, we have $\theta ={{30}^{\circ }}$. Now, we know that, $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$. From here we may substitute the value of $\cos \theta $ in the expression: $\left( 3\cos \theta -4{{\cos }^{3}}\theta \right)$ to get the answer. In this way we do not have to use Pythagoras theorem.
Complete step-by-step answer:
We have been provided with the trigonometric ratio, $\sin \theta =\dfrac{1}{2}$.
We know that, $\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$. Therefore, on comparing it with the above provided ratio, we have, 1 as the length of perpendicular and 2 as the length of hypotenuse of a right angle triangle.
Now, using Pythagoras theorem: $\text{hypotenuse}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicular}{{\text{r}}^{\text{2}}}$, we get,
\[\begin{align}
& \text{bas}{{\text{e}}^{\text{2}}}=\text{hypotenuse}{{\text{e}}^{\text{2}}}-\text{perpendicular}{{\text{r}}^{\text{2}}} \\
& \Rightarrow \text{base}=\sqrt{\text{hypotenuse}{{\text{e}}^{\text{2}}}-\text{perpendicular}{{\text{r}}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{{{2}^{\text{2}}}-{{1}^{\text{2}}}} \\
& \Rightarrow \text{base}=\sqrt{4-1} \\
& \Rightarrow \text{base}=\sqrt{3} \\
\end{align}\]
We know that, $\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}$.
$\Rightarrow \cos \theta =\dfrac{\sqrt{3}}{2}$
Here, we have to find the value of the expression: $\left( 3\cos \theta -4{{\cos }^{3}}\theta \right)$. Therefore, substituting the value of $\cos \theta $ in the expression, we get,
\[\begin{align}
& =3\times \dfrac{\sqrt{3}}{2}-4{{\left( \dfrac{\sqrt{3}}{2} \right)}^{3}} \\
& =\dfrac{3\sqrt{3}}{2}-4\times \dfrac{3\sqrt{3}}{8} \\
& =\dfrac{3\sqrt{3}}{2}-\dfrac{3\sqrt{3}}{2} \\
& =0 \\
\end{align}\]
Note: You may note that there is an alternate and easy method to solve this question. This requires the information relating to the values of trigonometric functions at some particular angles. We know that the value of $\sin {{30}^{\circ }}=\dfrac{1}{2}$, on comparing it with the information given in the question, we have $\theta ={{30}^{\circ }}$. Now, we know that, $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$. From here we may substitute the value of $\cos \theta $ in the expression: $\left( 3\cos \theta -4{{\cos }^{3}}\theta \right)$ to get the answer. In this way we do not have to use Pythagoras theorem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

