
If \[\sin \theta -\cos \theta =0\]then the value is \[({{\sin }^{4}}\theta +{{\cos }^{4}}\theta )\]
A. 1
B. \[\dfrac{3}{4}\]
C. \[\dfrac{1}{2}\]
D. \[\dfrac{1}{2}\]
Answer
593.7k+ views
Hint: We can solve this question by finding the value of $\theta $ from the given condition and then we can find the value of the required expression at a particular value of $\theta $.
Complete step-by-step answer:
\[\sin \theta -\cos \theta =0\]
\[\sin \theta =\cos \theta \] ...........................................(i)
Now we can use $\cos (\theta )=\sin \left( {{90}^{\circ }}-\theta \right)$
So we can write equation (i) as
\[\sin \theta =\sin ({{90}^{\circ }}-\theta )\]
On comparing
$\Rightarrow \theta ={{90}^{\circ }}-\theta $
$\Rightarrow \theta +\theta ={{90}^{\circ }}$
$\Rightarrow 2\theta ={{90}^{\circ }}$
$\Rightarrow \theta =\dfrac{{{90}^{\circ }}}{2}$
$\Rightarrow \theta ={{45}^{\circ }}$
Given expression is
\[\Rightarrow {{\sin }^{4}}\theta +{{\cos }^{4}}\theta \]
At $\theta ={{45}^{\circ }}$
\[\Rightarrow {{\left( \sin {{45}^{\circ }} \right)}^{4}}+{{\left( \cos {{45}^{\circ }} \right)}^{4}}\]
\[\Rightarrow {{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}\] \[\left\{ \because \sin 45{}^\circ =\dfrac{1}{\sqrt{2}},\cos 45{}^\circ =\dfrac{1}{\sqrt{2}} \right\}\]
\[\Rightarrow \dfrac{1}{4}+\dfrac{1}{4}\]
$\Rightarrow \dfrac{1}{2}$
Hence option C is correct.
Note: In this type of question we need to be careful about choosing the value of unknown angles. In the given question there is no range of $\theta $ given. So we choose an angle in the first quadrant. But if there is a range we need to choose the value of angle according to that range.
We can solve this question by using $\tan (\theta )=\dfrac{\sin (\theta )}{\cos (\theta )}$
\[\Rightarrow \sin \theta -\cos \theta =0\]
\[\Rightarrow \sin \theta =\cos \theta \]
\[\Rightarrow \dfrac{\sin \theta }{\cos \theta }=1\]
\[\Rightarrow \tan \theta =1\]
.\[\Rightarrow \tan \theta =\tan 45{}^\circ \]
\[\Rightarrow \theta =45{}^\circ \]
Now we can substitute the value of $\theta $ and calculate the value of the given expression.
Complete step-by-step answer:
\[\sin \theta -\cos \theta =0\]
\[\sin \theta =\cos \theta \] ...........................................(i)
Now we can use $\cos (\theta )=\sin \left( {{90}^{\circ }}-\theta \right)$
So we can write equation (i) as
\[\sin \theta =\sin ({{90}^{\circ }}-\theta )\]
On comparing
$\Rightarrow \theta ={{90}^{\circ }}-\theta $
$\Rightarrow \theta +\theta ={{90}^{\circ }}$
$\Rightarrow 2\theta ={{90}^{\circ }}$
$\Rightarrow \theta =\dfrac{{{90}^{\circ }}}{2}$
$\Rightarrow \theta ={{45}^{\circ }}$
Given expression is
\[\Rightarrow {{\sin }^{4}}\theta +{{\cos }^{4}}\theta \]
At $\theta ={{45}^{\circ }}$
\[\Rightarrow {{\left( \sin {{45}^{\circ }} \right)}^{4}}+{{\left( \cos {{45}^{\circ }} \right)}^{4}}\]
\[\Rightarrow {{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}\] \[\left\{ \because \sin 45{}^\circ =\dfrac{1}{\sqrt{2}},\cos 45{}^\circ =\dfrac{1}{\sqrt{2}} \right\}\]
\[\Rightarrow \dfrac{1}{4}+\dfrac{1}{4}\]
$\Rightarrow \dfrac{1}{2}$
Hence option C is correct.
Note: In this type of question we need to be careful about choosing the value of unknown angles. In the given question there is no range of $\theta $ given. So we choose an angle in the first quadrant. But if there is a range we need to choose the value of angle according to that range.
We can solve this question by using $\tan (\theta )=\dfrac{\sin (\theta )}{\cos (\theta )}$
\[\Rightarrow \sin \theta -\cos \theta =0\]
\[\Rightarrow \sin \theta =\cos \theta \]
\[\Rightarrow \dfrac{\sin \theta }{\cos \theta }=1\]
\[\Rightarrow \tan \theta =1\]
.\[\Rightarrow \tan \theta =\tan 45{}^\circ \]
\[\Rightarrow \theta =45{}^\circ \]
Now we can substitute the value of $\theta $ and calculate the value of the given expression.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

