
If $\sin \theta +\operatorname{cosec}\theta =2$, then find the value of ${{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta $?
Answer
558.9k+ views
Hint: We start solving the problem by squaring the both sides of the given trigonometric equation $\sin \theta +\operatorname{cosec}\theta =2$. We then use expand ${{\left( \sin \theta +\operatorname{cosec}\theta \right)}^{2}}$ using the fact that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. We then use the property of trigonometric functions that $\sin \theta \times \operatorname{cosec}\theta =1$ and make the necessary calculations to get the required value of ${{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta $.
Complete step by step answer:
According to the problem, we are given that the sum of the trigonometric functions as $\sin \theta +\operatorname{cosec}\theta =2$ and we need to find the value of ${{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta $.
Now, we have $\sin \theta +\operatorname{cosec}\theta =2$ ---(1).
Let us do squaring on both sides in equation (1).
$\Rightarrow {{\left( \sin \theta +\operatorname{cosec}\theta \right)}^{2}}={{2}^{2}}$ ---(2).
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. We use this result in equation (2)
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta +2\left( \sin \theta \right)\left( \operatorname{cosec}\theta \right)=4$ ---(3).
We know that $\sin \theta \times \operatorname{cosec}\theta =1$. We use this result in equation (3).
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta +2\times 1=4$.
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta +2=4$.
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2$.
∴ We have found the value of ${{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta $ as 2.
Note: We can also solve this problem as shown below:
We have $\sin \theta +\operatorname{cosec}\theta =2$ ---(4).
We know that $\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }$. We use this result in equation (4).
$\Rightarrow \sin \theta +\dfrac{1}{\sin \theta }=2$.
$\Rightarrow \dfrac{{{\sin }^{2}}\theta +1}{\sin \theta }=2$.
$\Rightarrow {{\sin }^{2}}\theta +1=2\sin \theta $.
$\Rightarrow {{\sin }^{2}}\theta -2\sin \theta +1=0$.
$\Rightarrow {{\left( \sin \theta -1 \right)}^{2}}=0$.
\[\Rightarrow \sin \theta -1=0\].
\[\Rightarrow \sin \theta =1\].
Let us now find the value of $\operatorname{cosec}\theta $.
So, we have $\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }$.
$\Rightarrow \operatorname{cosec}\theta =\dfrac{1}{1}=1$.
Now, let us find the value of ${{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta $.
So, we have \[{{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{1}^{2}}+{{1}^{2}}\].
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =1+1$.
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2$.
We can also solve this problem by performing trial and error method for the angle $\theta $ in the $\sin \theta +\operatorname{cosec}\theta =2$. Similarly, we can expect problems to find the value of ${{\sin }^{n}}\theta +{{\operatorname{cosec}}^{n}}\theta $ using the obtained value of $\sin \theta $ and $\operatorname{cosec}\theta $.
Complete step by step answer:
According to the problem, we are given that the sum of the trigonometric functions as $\sin \theta +\operatorname{cosec}\theta =2$ and we need to find the value of ${{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta $.
Now, we have $\sin \theta +\operatorname{cosec}\theta =2$ ---(1).
Let us do squaring on both sides in equation (1).
$\Rightarrow {{\left( \sin \theta +\operatorname{cosec}\theta \right)}^{2}}={{2}^{2}}$ ---(2).
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. We use this result in equation (2)
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta +2\left( \sin \theta \right)\left( \operatorname{cosec}\theta \right)=4$ ---(3).
We know that $\sin \theta \times \operatorname{cosec}\theta =1$. We use this result in equation (3).
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta +2\times 1=4$.
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta +2=4$.
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2$.
∴ We have found the value of ${{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta $ as 2.
Note: We can also solve this problem as shown below:
We have $\sin \theta +\operatorname{cosec}\theta =2$ ---(4).
We know that $\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }$. We use this result in equation (4).
$\Rightarrow \sin \theta +\dfrac{1}{\sin \theta }=2$.
$\Rightarrow \dfrac{{{\sin }^{2}}\theta +1}{\sin \theta }=2$.
$\Rightarrow {{\sin }^{2}}\theta +1=2\sin \theta $.
$\Rightarrow {{\sin }^{2}}\theta -2\sin \theta +1=0$.
$\Rightarrow {{\left( \sin \theta -1 \right)}^{2}}=0$.
\[\Rightarrow \sin \theta -1=0\].
\[\Rightarrow \sin \theta =1\].
Let us now find the value of $\operatorname{cosec}\theta $.
So, we have $\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }$.
$\Rightarrow \operatorname{cosec}\theta =\dfrac{1}{1}=1$.
Now, let us find the value of ${{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta $.
So, we have \[{{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta ={{1}^{2}}+{{1}^{2}}\].
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =1+1$.
$\Rightarrow {{\sin }^{2}}\theta +{{\operatorname{cosec}}^{2}}\theta =2$.
We can also solve this problem by performing trial and error method for the angle $\theta $ in the $\sin \theta +\operatorname{cosec}\theta =2$. Similarly, we can expect problems to find the value of ${{\sin }^{n}}\theta +{{\operatorname{cosec}}^{n}}\theta $ using the obtained value of $\sin \theta $ and $\operatorname{cosec}\theta $.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

