
If $\sin \theta +\cos \theta =x$ , Prove that ${{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\dfrac{4-3{{\left( {{x}^{2}}-1 \right)}^{2}}}{4}$
Answer
599.1k+ views
Hint: In this question,we will use some algebraic formulas such that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)$ and trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Complete step-by-step answer:
It is given that, $\sin \theta +\cos \theta =x$
Squaring the given equation, we get
${{\left( \sin \theta +\cos \theta \right)}^{2}}={{x}^{2}}$
Appling the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
${{\sin }^{2}}\theta +2\sin \theta \cos \theta +{{\cos }^{2}}\theta ={{x}^{2}}$
Rearranging the terms, we get
$\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)+2\sin \theta \cos \theta ={{x}^{2}}$
We know that, the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
$1+2\sin \theta \cos \theta ={{x}^{2}}$
$2\sin \theta \cos \theta ={{x}^{2}}-1$
Dividing both sides by 2, we get
$\sin \theta \cos \theta =\dfrac{{{x}^{2}}-1}{2}$
Again, squaring on both sides, we get
${{\left( \sin \theta \cos \theta \right)}^{2}}={{\left( \dfrac{{{x}^{2}}-1}{2} \right)}^{2}}$
${{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{{{({{x}^{2}}-1)}^{2}}}{4}................(1)$
Let us consider the L. H. S.
${{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( {{\sin }^{2}}\theta \right)}^{3}}+{{\left( {{\cos }^{2}}\theta \right)}^{3}}$
Appling the formula ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)$ and it is rearranging as follow${{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab(a+b)$, we get
${{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{3}}-3{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right).........(2)$
Now put the value from equation (1) ${{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{{{({{x}^{2}}-1)}^{2}}}{4}$ in the equation (2) and trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[{{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( 1 \right)}^{3}}-3\dfrac{{{({{x}^{2}}-1)}^{2}}}{4}\left( 1 \right)\]
Rearranging the terms, we get
\[{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =1-3\dfrac{{{({{x}^{2}}-1)}^{2}}}{4}\]
Taking the LCM on the right side, we get
\[{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\dfrac{4-3{{({{x}^{2}}-1)}^{2}}}{4}\]
This is the desired result.
Note: We might get confused the algebraic expansion of ${{(a+b)}^{3}}$ and ${{a}^{3}}-{{b}^{3}}$. The algebraic expansion of ${{(a+b)}^{3}}$ is ${{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$ and algebraic expansion of ${{a}^{3}}-{{b}^{3}}$ is ${{\left( a+b \right)}^{3}}-3ab(a+b)$. Both the algebraic expansions are not equal.
Complete step-by-step answer:
It is given that, $\sin \theta +\cos \theta =x$
Squaring the given equation, we get
${{\left( \sin \theta +\cos \theta \right)}^{2}}={{x}^{2}}$
Appling the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get
${{\sin }^{2}}\theta +2\sin \theta \cos \theta +{{\cos }^{2}}\theta ={{x}^{2}}$
Rearranging the terms, we get
$\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)+2\sin \theta \cos \theta ={{x}^{2}}$
We know that, the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
$1+2\sin \theta \cos \theta ={{x}^{2}}$
$2\sin \theta \cos \theta ={{x}^{2}}-1$
Dividing both sides by 2, we get
$\sin \theta \cos \theta =\dfrac{{{x}^{2}}-1}{2}$
Again, squaring on both sides, we get
${{\left( \sin \theta \cos \theta \right)}^{2}}={{\left( \dfrac{{{x}^{2}}-1}{2} \right)}^{2}}$
${{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{{{({{x}^{2}}-1)}^{2}}}{4}................(1)$
Let us consider the L. H. S.
${{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( {{\sin }^{2}}\theta \right)}^{3}}+{{\left( {{\cos }^{2}}\theta \right)}^{3}}$
Appling the formula ${{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab(a+b)$ and it is rearranging as follow${{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab(a+b)$, we get
${{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{3}}-3{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right).........(2)$
Now put the value from equation (1) ${{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{{{({{x}^{2}}-1)}^{2}}}{4}$ in the equation (2) and trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we get
\[{{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( 1 \right)}^{3}}-3\dfrac{{{({{x}^{2}}-1)}^{2}}}{4}\left( 1 \right)\]
Rearranging the terms, we get
\[{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =1-3\dfrac{{{({{x}^{2}}-1)}^{2}}}{4}\]
Taking the LCM on the right side, we get
\[{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =\dfrac{4-3{{({{x}^{2}}-1)}^{2}}}{4}\]
This is the desired result.
Note: We might get confused the algebraic expansion of ${{(a+b)}^{3}}$ and ${{a}^{3}}-{{b}^{3}}$. The algebraic expansion of ${{(a+b)}^{3}}$ is ${{a}^{3}}+3{{a}^{2}}b+3a{{b}^{2}}+{{b}^{3}}$ and algebraic expansion of ${{a}^{3}}-{{b}^{3}}$ is ${{\left( a+b \right)}^{3}}-3ab(a+b)$. Both the algebraic expansions are not equal.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

