
If $\sin \theta +\cos \theta =\sqrt{2}\cos \theta $, then find the general value of $\theta $?
Answer
567k+ views
Hint: We start solving the problem by dividing both sides of the given trigonometric equation with $\sqrt{2}$. We then make use of the results $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ and $\cos A\cos B+\sin A\sin B=\cos \left( A-B \right)$ to proceed through the problem. We then make use of the fact that if $\cos \theta =\cos \alpha $, then the general solution is $\theta =2n\pi \pm \alpha $. We then make the necessary calculations to get the required answer.
Complete step by step answer:
According to the problem, we are given that $\sin \theta +\cos \theta =\sqrt{2}\cos \theta $ and we need to find the general value of $\theta $.
Now, we have $\sin \theta +\cos \theta =\sqrt{2}\cos \theta $ ---(1).
Let us divide both sides of equation (1) with $\sqrt{2}$.
$\Rightarrow \dfrac{\sin \theta +\cos \theta }{\sqrt{2}}=\dfrac{\sqrt{2}\cos \theta }{\sqrt{2}}$.
$\Rightarrow \dfrac{1}{\sqrt{2}}\sin \theta +\dfrac{1}{\sqrt{2}}\cos \theta =\cos \theta $ ---(2).
We know that $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$. Let us use this in equation (2).
$\Rightarrow \sin \dfrac{\pi }{4}\sin \theta +\cos \dfrac{\pi }{4}\cos \theta =\cos \theta $.
$\Rightarrow \cos \dfrac{\pi }{4}\cos \theta +\sin \dfrac{\pi }{4}\sin \theta =\cos \theta $ ---(3).
We know that $\cos A\cos B+\sin A\sin B=\cos \left( A-B \right)$. Let us use this result in equation (3).
$\Rightarrow \cos \left( \dfrac{\pi }{4}-\theta \right)=\cos \theta $ ---(4).
We know that if $\cos \theta =\cos \alpha $, then the general solution is defined as $\theta =2n\pi \pm \alpha $, $n\in Z$.
So, we have $\theta =2n\pi \pm \left( \dfrac{\pi }{4}-\theta \right)$.
$\Rightarrow \theta =2n\pi +\left( \dfrac{\pi }{4}-\theta \right)$, $\theta =2n\pi -\left( \dfrac{\pi }{4}-\theta \right)$.
$\Rightarrow 2\theta =2n\pi +\dfrac{\pi }{4}$, $\theta =2n\pi -\dfrac{\pi }{4}+\theta $(which is a contradiction).
$\Rightarrow \theta =n\pi +\dfrac{\pi }{8}$, $n\in Z$.
$\therefore $ We have found the general solution for the given trigonometric equation $\sin \theta +\cos \theta =\sqrt{2}\cos \theta $ as $n\pi +\dfrac{\pi }{8}$, $n\in Z$.
Note: We should perform each step carefully in order to avoid confusion and calculation mistakes. We should not confuse between principal and general value while solving the problems involving trigonometric equations. We can also solve this problem as shown below:
We have given $\sin \theta +\cos \theta =\sqrt{2}\cos \theta $ ---(5).
Let us divide both sides of equation (5) with $\sqrt{2}$.
$\Rightarrow \dfrac{\sin \theta +\cos \theta }{\sqrt{2}}=\dfrac{\sqrt{2}\cos \theta }{\sqrt{2}}$.
$\Rightarrow \dfrac{1}{\sqrt{2}}\sin \theta +\dfrac{1}{\sqrt{2}}\cos \theta =\cos \theta $ ---(6).
We know that $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$. Let us use this in equation (6).
$\Rightarrow \cos \dfrac{\pi }{4}\sin \theta +\sin \dfrac{\pi }{4}\cos \theta =\cos \theta $.
$\Rightarrow \sin \theta \cos \dfrac{\pi }{4}+\cos \theta \sin \dfrac{\pi }{4}=\cos \theta $ ---(7).
We know that $\sin A\cos B+\cos A\sin B=\sin \left( A+B \right)$. Let us use this result in equation (7).
\[\Rightarrow \sin \left( \theta +\dfrac{\pi }{4} \right)=\cos \theta \] ---(8).
We know that $\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)$. Let us use this result in equation (8).
\[\Rightarrow \sin \left( \theta +\dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{2}-\theta \right)\].
We know that if $\sin \theta =\sin \alpha $, then the general solution is defined as $\theta =n\pi +{{\left( -1 \right)}^{n}}\alpha $, $n\in Z$.
\[\Rightarrow \theta +\dfrac{\pi }{4}=n\pi +{{\left( -1 \right)}^{n}}\left( \dfrac{\pi }{2}-\theta \right)\].
Let us assume n is even.
\[\Rightarrow \theta +\dfrac{\pi }{4}=n\pi +\left( \dfrac{\pi }{2}-\theta \right)\].
\[\Rightarrow 2\theta =n\pi +\dfrac{\pi }{4}\].
\[\Rightarrow \theta =\dfrac{n\pi }{2}+\dfrac{\pi }{8}\], $n\in Z$.
Let us assume n is odd.
\[\Rightarrow \theta +\dfrac{\pi }{4}=n\pi -\left( \dfrac{\pi }{2}-\theta \right)\].
\[\Rightarrow \theta +\dfrac{\pi }{4}=n\pi -\dfrac{\pi }{2}+\theta \]
\[\Rightarrow \dfrac{\pi }{4}=n\pi -\dfrac{\pi }{2}\], which is a contradiction.
Complete step by step answer:
According to the problem, we are given that $\sin \theta +\cos \theta =\sqrt{2}\cos \theta $ and we need to find the general value of $\theta $.
Now, we have $\sin \theta +\cos \theta =\sqrt{2}\cos \theta $ ---(1).
Let us divide both sides of equation (1) with $\sqrt{2}$.
$\Rightarrow \dfrac{\sin \theta +\cos \theta }{\sqrt{2}}=\dfrac{\sqrt{2}\cos \theta }{\sqrt{2}}$.
$\Rightarrow \dfrac{1}{\sqrt{2}}\sin \theta +\dfrac{1}{\sqrt{2}}\cos \theta =\cos \theta $ ---(2).
We know that $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$. Let us use this in equation (2).
$\Rightarrow \sin \dfrac{\pi }{4}\sin \theta +\cos \dfrac{\pi }{4}\cos \theta =\cos \theta $.
$\Rightarrow \cos \dfrac{\pi }{4}\cos \theta +\sin \dfrac{\pi }{4}\sin \theta =\cos \theta $ ---(3).
We know that $\cos A\cos B+\sin A\sin B=\cos \left( A-B \right)$. Let us use this result in equation (3).
$\Rightarrow \cos \left( \dfrac{\pi }{4}-\theta \right)=\cos \theta $ ---(4).
We know that if $\cos \theta =\cos \alpha $, then the general solution is defined as $\theta =2n\pi \pm \alpha $, $n\in Z$.
So, we have $\theta =2n\pi \pm \left( \dfrac{\pi }{4}-\theta \right)$.
$\Rightarrow \theta =2n\pi +\left( \dfrac{\pi }{4}-\theta \right)$, $\theta =2n\pi -\left( \dfrac{\pi }{4}-\theta \right)$.
$\Rightarrow 2\theta =2n\pi +\dfrac{\pi }{4}$, $\theta =2n\pi -\dfrac{\pi }{4}+\theta $(which is a contradiction).
$\Rightarrow \theta =n\pi +\dfrac{\pi }{8}$, $n\in Z$.
$\therefore $ We have found the general solution for the given trigonometric equation $\sin \theta +\cos \theta =\sqrt{2}\cos \theta $ as $n\pi +\dfrac{\pi }{8}$, $n\in Z$.
Note: We should perform each step carefully in order to avoid confusion and calculation mistakes. We should not confuse between principal and general value while solving the problems involving trigonometric equations. We can also solve this problem as shown below:
We have given $\sin \theta +\cos \theta =\sqrt{2}\cos \theta $ ---(5).
Let us divide both sides of equation (5) with $\sqrt{2}$.
$\Rightarrow \dfrac{\sin \theta +\cos \theta }{\sqrt{2}}=\dfrac{\sqrt{2}\cos \theta }{\sqrt{2}}$.
$\Rightarrow \dfrac{1}{\sqrt{2}}\sin \theta +\dfrac{1}{\sqrt{2}}\cos \theta =\cos \theta $ ---(6).
We know that $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$. Let us use this in equation (6).
$\Rightarrow \cos \dfrac{\pi }{4}\sin \theta +\sin \dfrac{\pi }{4}\cos \theta =\cos \theta $.
$\Rightarrow \sin \theta \cos \dfrac{\pi }{4}+\cos \theta \sin \dfrac{\pi }{4}=\cos \theta $ ---(7).
We know that $\sin A\cos B+\cos A\sin B=\sin \left( A+B \right)$. Let us use this result in equation (7).
\[\Rightarrow \sin \left( \theta +\dfrac{\pi }{4} \right)=\cos \theta \] ---(8).
We know that $\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)$. Let us use this result in equation (8).
\[\Rightarrow \sin \left( \theta +\dfrac{\pi }{4} \right)=\sin \left( \dfrac{\pi }{2}-\theta \right)\].
We know that if $\sin \theta =\sin \alpha $, then the general solution is defined as $\theta =n\pi +{{\left( -1 \right)}^{n}}\alpha $, $n\in Z$.
\[\Rightarrow \theta +\dfrac{\pi }{4}=n\pi +{{\left( -1 \right)}^{n}}\left( \dfrac{\pi }{2}-\theta \right)\].
Let us assume n is even.
\[\Rightarrow \theta +\dfrac{\pi }{4}=n\pi +\left( \dfrac{\pi }{2}-\theta \right)\].
\[\Rightarrow 2\theta =n\pi +\dfrac{\pi }{4}\].
\[\Rightarrow \theta =\dfrac{n\pi }{2}+\dfrac{\pi }{8}\], $n\in Z$.
Let us assume n is odd.
\[\Rightarrow \theta +\dfrac{\pi }{4}=n\pi -\left( \dfrac{\pi }{2}-\theta \right)\].
\[\Rightarrow \theta +\dfrac{\pi }{4}=n\pi -\dfrac{\pi }{2}+\theta \]
\[\Rightarrow \dfrac{\pi }{4}=n\pi -\dfrac{\pi }{2}\], which is a contradiction.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

