
If \[\sin \theta +\cos \theta =1\] then \[\sin \theta \cos \theta \] is equal to
A. 0
B. \[\dfrac{1}{2}\]
C. 1
D. \[-\dfrac{1}{2}\]
Answer
578.1k+ views
Hint: firstly squaring the given data on both the left hand side and right hand side and using the basic trigonometric identity that is \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. By substituting this value and doing basic mathematical operations like addition etc then we will get the required value.
Complete step-by-step answer:
Given that \[\sin \theta +\cos \theta =1\]
We have to find the value of \[\sin \theta \cos \theta \].
\[\sin \theta +\cos \theta =1\]
Squaring on both left hand side and right hand side then we will get,
\[{{\left( \sin \theta +\cos \theta \right)}^{2}}={{\left( 1 \right)}^{2}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know the property \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
Applying the above mentioned property to simplify the expression we get,
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta +2\sin \theta \cos \theta =1\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
We know the property \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
Using the above mentioned property to solve the expression we get,
\[1+2\sin \theta \cos \theta =1\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Subtracting with 1 on both sides we get,
\[2\sin \theta \cos \theta =0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Dividing with 2 on both sides we get,
\[\sin \theta \cos \theta =0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)
So the obtained value of \[\sin \theta \cos \theta \]is equal to 0.
So, the correct answer is “Option A”.
Note: Use the property \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] to simplify the given problem. The possible error that you may encounter can be the wrong substitution of the trigonometric property. Calculations should be carried out carefully.
Complete step-by-step answer:
Given that \[\sin \theta +\cos \theta =1\]
We have to find the value of \[\sin \theta \cos \theta \].
\[\sin \theta +\cos \theta =1\]
Squaring on both left hand side and right hand side then we will get,
\[{{\left( \sin \theta +\cos \theta \right)}^{2}}={{\left( 1 \right)}^{2}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know the property \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
Applying the above mentioned property to simplify the expression we get,
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta +2\sin \theta \cos \theta =1\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
We know the property \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
Using the above mentioned property to solve the expression we get,
\[1+2\sin \theta \cos \theta =1\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Subtracting with 1 on both sides we get,
\[2\sin \theta \cos \theta =0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Dividing with 2 on both sides we get,
\[\sin \theta \cos \theta =0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)
So the obtained value of \[\sin \theta \cos \theta \]is equal to 0.
So, the correct answer is “Option A”.
Note: Use the property \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] to simplify the given problem. The possible error that you may encounter can be the wrong substitution of the trigonometric property. Calculations should be carried out carefully.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

