
If \[\sin \theta +\cos \theta =1\] then \[\sin \theta \cos \theta \] is equal to
A. 0
B. \[\dfrac{1}{2}\]
C. 1
D. \[-\dfrac{1}{2}\]
Answer
511.8k+ views
Hint: firstly squaring the given data on both the left hand side and right hand side and using the basic trigonometric identity that is \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]. By substituting this value and doing basic mathematical operations like addition etc then we will get the required value.
Complete step-by-step answer:
Given that \[\sin \theta +\cos \theta =1\]
We have to find the value of \[\sin \theta \cos \theta \].
\[\sin \theta +\cos \theta =1\]
Squaring on both left hand side and right hand side then we will get,
\[{{\left( \sin \theta +\cos \theta \right)}^{2}}={{\left( 1 \right)}^{2}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know the property \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
Applying the above mentioned property to simplify the expression we get,
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta +2\sin \theta \cos \theta =1\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
We know the property \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
Using the above mentioned property to solve the expression we get,
\[1+2\sin \theta \cos \theta =1\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Subtracting with 1 on both sides we get,
\[2\sin \theta \cos \theta =0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Dividing with 2 on both sides we get,
\[\sin \theta \cos \theta =0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)
So the obtained value of \[\sin \theta \cos \theta \]is equal to 0.
So, the correct answer is “Option A”.
Note: Use the property \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] to simplify the given problem. The possible error that you may encounter can be the wrong substitution of the trigonometric property. Calculations should be carried out carefully.
Complete step-by-step answer:
Given that \[\sin \theta +\cos \theta =1\]
We have to find the value of \[\sin \theta \cos \theta \].
\[\sin \theta +\cos \theta =1\]
Squaring on both left hand side and right hand side then we will get,
\[{{\left( \sin \theta +\cos \theta \right)}^{2}}={{\left( 1 \right)}^{2}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know the property \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\].
Applying the above mentioned property to simplify the expression we get,
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta +2\sin \theta \cos \theta =1\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
We know the property \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
Using the above mentioned property to solve the expression we get,
\[1+2\sin \theta \cos \theta =1\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Subtracting with 1 on both sides we get,
\[2\sin \theta \cos \theta =0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Dividing with 2 on both sides we get,
\[\sin \theta \cos \theta =0\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)
So the obtained value of \[\sin \theta \cos \theta \]is equal to 0.
So, the correct answer is “Option A”.
Note: Use the property \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\] to simplify the given problem. The possible error that you may encounter can be the wrong substitution of the trigonometric property. Calculations should be carried out carefully.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
