
If $\sin \left( \theta +\alpha \right)=a$ and $\sin \left( \theta +\beta \right)=b$ , $\left( \left( 0<\alpha ,\beta ,\theta <\dfrac{\pi }{2} \right) \right)$ then $2{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right)$ is
(A)$1-{{a}^{2}}-{{b}^{2}}$
(B)$1-2{{a}^{2}}-2{{b}^{2}}$
(C)$2+{{a}^{2}}+{{b}^{2}}$
(D)$2-{{a}^{2}}-{{b}^{2}}$
Answer
578.1k+ views
Hint: For answering this question we will first find the value of $\cos \left( \theta +\alpha \right)$ and $\cos \left( \theta +\beta \right)$ using the values of $\sin \left( \theta +\alpha \right)=a$ and $\sin \left( \theta +\beta \right)=b$ from the formulae $\cos x=\sqrt{1-{{\sin }^{2}}x}$. And after that we will find the value of $\cos \left( \alpha -\beta \right)=\cos \left[ \left( \theta +\alpha \right)-\left( \theta +\beta \right) \right]$ using $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ and substitute it in the equation we have $2{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right)$ and simplify it.
Complete step by step answer:
From the question we have that the value of $\sin \left( \theta +\alpha \right)=a$ and $\sin \left( \theta +\beta \right)=b$.
Since we know that $\cos x=\sqrt{1-{{\sin }^{2}}x}$ we can say that the value of $\cos \left( \theta +\alpha \right)=\sqrt{1-{{a}^{2}}}$ and$\cos \left( \theta +\beta \right)=\sqrt{1-{{b}^{2}}}$ .
Here we need the value of $\cos \left( \alpha -\beta \right)$ in order to answer the question. We can write $\alpha -\beta $ as $\left( \theta +\alpha \right)-\left( \theta +\beta \right)$ by adding and subtracting $\theta $ . Since we know that $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ . We can have the value of $\cos \left( \alpha -\beta \right)$ as $\cos \left( \alpha -\beta \right)=\cos \left[ \left( \theta +\alpha \right)-\left( \theta +\beta \right) \right]=\cos \left( \theta +\alpha \right)\cos \left( \theta +\beta \right)+\sin \left( \theta +\alpha \right)\sin \left( \theta +\beta \right)$ .
By substituting the respective values we will have $\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab$ .
By substituting this value $\cos \left( \alpha -\beta \right)=\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab$ in the place of the required value we will get $2{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right)=2{{\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab \right)}^{2}}-1-4ab\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab \right)$ .
By simplifying this equation we will have $2{{\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab \right)}^{2}}-1-4{{a}^{2}}{{b}^{2}}-4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}$ .
Since we know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ by using this we will have $2\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right)+2ab\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}} \right)+{{a}^{2}}{{b}^{2}} \right)-1-4{{a}^{2}}{{b}^{2}}-4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}$ .
By simplifying this we will have $\begin{align}
& 2\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right) \right)+2{{a}^{2}}{{b}^{2}}+4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}-1-4{{a}^{2}}{{b}^{2}}-4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}} \\
& \Rightarrow 2\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right) \right)-1-2{{a}^{2}}{{b}^{2}} \\
\end{align}$ .
By expanding this we will have $2\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right) \right)-1-2{{a}^{2}}{{b}^{2}}\Rightarrow 2\left( 1-{{a}^{2}}-{{b}^{2}}+{{a}^{2}}{{b}^{2}} \right)-1-2{{a}^{2}}{{b}^{2}}$.
By expanding and simplifying this we will have $2-2{{a}^{2}}-2{{b}^{2}}+2{{a}^{2}}{{b}^{2}}-1-2{{a}^{2}}{{b}^{2}}=1-2{{a}^{2}}-2{{b}^{2}}$.
Hence we end up with the value that $2{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right)=1-2{{a}^{2}}-2{{b}^{2}}$ .
So now we have a conclusion that when $\sin \left( \theta +\alpha \right)=a$ and $\sin \left( \theta +\beta \right)=b$ , then $2{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right)=1-2{{a}^{2}}-2{{b}^{2}}$.
So, the correct answer is “Option B”.
Note: While answering of questions of this type we should remember that the formula is $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ not $\cos \left( A-B \right)=\cos A\cos B-\sin A\sin B$ . If we use this we will end up having a wrong answer.
Complete step by step answer:
From the question we have that the value of $\sin \left( \theta +\alpha \right)=a$ and $\sin \left( \theta +\beta \right)=b$.
Since we know that $\cos x=\sqrt{1-{{\sin }^{2}}x}$ we can say that the value of $\cos \left( \theta +\alpha \right)=\sqrt{1-{{a}^{2}}}$ and$\cos \left( \theta +\beta \right)=\sqrt{1-{{b}^{2}}}$ .
Here we need the value of $\cos \left( \alpha -\beta \right)$ in order to answer the question. We can write $\alpha -\beta $ as $\left( \theta +\alpha \right)-\left( \theta +\beta \right)$ by adding and subtracting $\theta $ . Since we know that $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ . We can have the value of $\cos \left( \alpha -\beta \right)$ as $\cos \left( \alpha -\beta \right)=\cos \left[ \left( \theta +\alpha \right)-\left( \theta +\beta \right) \right]=\cos \left( \theta +\alpha \right)\cos \left( \theta +\beta \right)+\sin \left( \theta +\alpha \right)\sin \left( \theta +\beta \right)$ .
By substituting the respective values we will have $\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab$ .
By substituting this value $\cos \left( \alpha -\beta \right)=\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab$ in the place of the required value we will get $2{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right)=2{{\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab \right)}^{2}}-1-4ab\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab \right)$ .
By simplifying this equation we will have $2{{\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}+ab \right)}^{2}}-1-4{{a}^{2}}{{b}^{2}}-4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}$ .
Since we know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ by using this we will have $2\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right)+2ab\left( \sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}} \right)+{{a}^{2}}{{b}^{2}} \right)-1-4{{a}^{2}}{{b}^{2}}-4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}$ .
By simplifying this we will have $\begin{align}
& 2\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right) \right)+2{{a}^{2}}{{b}^{2}}+4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}}-1-4{{a}^{2}}{{b}^{2}}-4ab\sqrt{1-{{a}^{2}}}\sqrt{1-{{b}^{2}}} \\
& \Rightarrow 2\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right) \right)-1-2{{a}^{2}}{{b}^{2}} \\
\end{align}$ .
By expanding this we will have $2\left( \left( 1-{{a}^{2}} \right)\left( 1-{{b}^{2}} \right) \right)-1-2{{a}^{2}}{{b}^{2}}\Rightarrow 2\left( 1-{{a}^{2}}-{{b}^{2}}+{{a}^{2}}{{b}^{2}} \right)-1-2{{a}^{2}}{{b}^{2}}$.
By expanding and simplifying this we will have $2-2{{a}^{2}}-2{{b}^{2}}+2{{a}^{2}}{{b}^{2}}-1-2{{a}^{2}}{{b}^{2}}=1-2{{a}^{2}}-2{{b}^{2}}$.
Hence we end up with the value that $2{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right)=1-2{{a}^{2}}-2{{b}^{2}}$ .
So now we have a conclusion that when $\sin \left( \theta +\alpha \right)=a$ and $\sin \left( \theta +\beta \right)=b$ , then $2{{\cos }^{2}}\left( \alpha -\beta \right)-1-4ab\cos \left( \alpha -\beta \right)=1-2{{a}^{2}}-2{{b}^{2}}$.
So, the correct answer is “Option B”.
Note: While answering of questions of this type we should remember that the formula is $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$ not $\cos \left( A-B \right)=\cos A\cos B-\sin A\sin B$ . If we use this we will end up having a wrong answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

