
If \[\sin \left( C+D \right)=\sin C.\cos D+\cos C.\sin D\] then the value of \[\sin {{75}^{\circ }}\] is
(a) \[\dfrac{1}{2\sqrt{2}}\left( \sqrt{3}+1 \right)\]
(b) \[\dfrac{1}{2}\left( \sqrt{3}+1 \right)\]
(c) \[\dfrac{\sqrt{3}}{2}\]
(d) \[\dfrac{1}{2}\]
Answer
563.4k+ views
Hint: We solve this problem by converting the given angle \[{{75}^{\circ }}\] into a sum of two angles such that the sine and cosine values of those angles are known. We know the standard values of sine and cosine of angles \[{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}\] so, we need to convert \[{{75}^{\circ }}\] into sum of two angles so that we can use the given formula that is
\[\sin \left( C+D \right)=\sin C.\cos D+\cos C.\sin D\]
Complete step-by-step answer:
We are given that
\[\Rightarrow \sin \left( C+D \right)=\sin C.\cos D+\cos C.\sin D.....equation(i)\]
We are asked to find the value of \[\sin {{75}^{\circ }}\]
We know the standard values of sine and cosine of angles \[{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}\]
Now, let us to convert \[{{75}^{\circ }}\] into sum of two angles as follows
\[\Rightarrow {{75}^{\circ }}={{30}^{\circ }}+{{45}^{\circ }}\]
Now, by applying the sine function on both sides we get
\[\Rightarrow \sin {{75}^{\circ }}=\sin \left( {{30}^{\circ }}+{{45}^{\circ }} \right)\]
We are given that the formula of composite angles that is
\[\Rightarrow \sin \left( C+D \right)=\sin C.\cos D+\cos C.\sin D\]
By using this formula to above equation we get
\[\Rightarrow \sin {{75}^{\circ }}=\sin {{30}^{\circ }}.\cos {{45}^{\circ }}+\cos {{30}^{\circ }}.\sin {{45}^{\circ }}\]
We know that from the standard table of trigonometric ratios
\[\begin{align}
& \Rightarrow \sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
\end{align}\]
By using these standard values to above equation we get
\[\begin{align}
& \Rightarrow \sin {{75}^{\circ }}=\left( \dfrac{1}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right) \\
& \Rightarrow \sin {{75}^{\circ }}=\dfrac{1}{2\sqrt{2}}\left( \sqrt{3}+1 \right) \\
\end{align}\]
Therefore the value of \[\sin {{75}^{\circ }}\] is
\[\therefore \sin {{75}^{\circ }}=\dfrac{1}{2\sqrt{2}}\left( \sqrt{3}+1 \right)\]
So, option (a) is the correct answer.
So, the correct answer is “Option A”.
Note: We can find the value of \[\sin {{75}^{\circ }}\] from the composite angle formula of cosine function.
We know that
\[\Rightarrow \sin \theta =\cos \left( {{90}^{\circ }}-\theta \right)\]
By using the above result we get
\[\Rightarrow \sin {{75}^{\circ }}=\cos {{15}^{\circ }}\]
Let us divide the angle \[{{15}^{\circ }}\] into difference of two angles that is
\[\Rightarrow \sin {{75}^{\circ }}=\cos \left( {{45}^{\circ }}-{{30}^{\circ }} \right)\]
The composite angle formula for cosine function is given as
\[\Rightarrow \cos \left( A-B \right)=\cos A.\cos B+\sin A.\sin B\]
By using this formula to above equation we get
\[\Rightarrow \sin {{75}^{\circ }}=\cos {{45}^{\circ }}\cos {{30}^{\circ }}+\sin {{45}^{\circ }}.\sin {{30}^{\circ }}\]
We know that from the standard table of trigonometric ratios
\[\begin{align}
& \Rightarrow \sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
\end{align}\]
By using these standard values to above equation we get
\[\begin{align}
& \Rightarrow \sin {{75}^{\circ }}=\left( \dfrac{1}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right) \\
& \Rightarrow \sin {{75}^{\circ }}=\dfrac{1}{2\sqrt{2}}\left( \sqrt{3}+1 \right) \\
\end{align}\]
Therefore the value of \[\sin {{75}^{\circ }}\] is
\[\therefore \sin {{75}^{\circ }}=\dfrac{1}{2\sqrt{2}}\left( \sqrt{3}+1 \right)\]
So, option (a) is the correct answer.
\[\sin \left( C+D \right)=\sin C.\cos D+\cos C.\sin D\]
Complete step-by-step answer:
We are given that
\[\Rightarrow \sin \left( C+D \right)=\sin C.\cos D+\cos C.\sin D.....equation(i)\]
We are asked to find the value of \[\sin {{75}^{\circ }}\]
We know the standard values of sine and cosine of angles \[{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}\]
Now, let us to convert \[{{75}^{\circ }}\] into sum of two angles as follows
\[\Rightarrow {{75}^{\circ }}={{30}^{\circ }}+{{45}^{\circ }}\]
Now, by applying the sine function on both sides we get
\[\Rightarrow \sin {{75}^{\circ }}=\sin \left( {{30}^{\circ }}+{{45}^{\circ }} \right)\]
We are given that the formula of composite angles that is
\[\Rightarrow \sin \left( C+D \right)=\sin C.\cos D+\cos C.\sin D\]
By using this formula to above equation we get
\[\Rightarrow \sin {{75}^{\circ }}=\sin {{30}^{\circ }}.\cos {{45}^{\circ }}+\cos {{30}^{\circ }}.\sin {{45}^{\circ }}\]
We know that from the standard table of trigonometric ratios
\[\begin{align}
& \Rightarrow \sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
\end{align}\]
By using these standard values to above equation we get
\[\begin{align}
& \Rightarrow \sin {{75}^{\circ }}=\left( \dfrac{1}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right) \\
& \Rightarrow \sin {{75}^{\circ }}=\dfrac{1}{2\sqrt{2}}\left( \sqrt{3}+1 \right) \\
\end{align}\]
Therefore the value of \[\sin {{75}^{\circ }}\] is
\[\therefore \sin {{75}^{\circ }}=\dfrac{1}{2\sqrt{2}}\left( \sqrt{3}+1 \right)\]
So, option (a) is the correct answer.
So, the correct answer is “Option A”.
Note: We can find the value of \[\sin {{75}^{\circ }}\] from the composite angle formula of cosine function.
We know that
\[\Rightarrow \sin \theta =\cos \left( {{90}^{\circ }}-\theta \right)\]
By using the above result we get
\[\Rightarrow \sin {{75}^{\circ }}=\cos {{15}^{\circ }}\]
Let us divide the angle \[{{15}^{\circ }}\] into difference of two angles that is
\[\Rightarrow \sin {{75}^{\circ }}=\cos \left( {{45}^{\circ }}-{{30}^{\circ }} \right)\]
The composite angle formula for cosine function is given as
\[\Rightarrow \cos \left( A-B \right)=\cos A.\cos B+\sin A.\sin B\]
By using this formula to above equation we get
\[\Rightarrow \sin {{75}^{\circ }}=\cos {{45}^{\circ }}\cos {{30}^{\circ }}+\sin {{45}^{\circ }}.\sin {{30}^{\circ }}\]
We know that from the standard table of trigonometric ratios
\[\begin{align}
& \Rightarrow \sin {{30}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
\end{align}\]
By using these standard values to above equation we get
\[\begin{align}
& \Rightarrow \sin {{75}^{\circ }}=\left( \dfrac{1}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right) \\
& \Rightarrow \sin {{75}^{\circ }}=\dfrac{1}{2\sqrt{2}}\left( \sqrt{3}+1 \right) \\
\end{align}\]
Therefore the value of \[\sin {{75}^{\circ }}\] is
\[\therefore \sin {{75}^{\circ }}=\dfrac{1}{2\sqrt{2}}\left( \sqrt{3}+1 \right)\]
So, option (a) is the correct answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

