
If \[\sin \left( \alpha +\beta \right)=1\] and \[\sin \left( \alpha -\beta \right)=\dfrac{1}{2}\], where \[0\le \alpha ,\beta \le \dfrac{\pi }{2}\], then find the values of\[\tan \left( \alpha +2\beta \right)\] and \[\tan \left( 2\alpha +\beta \right)\]
Answer
611.7k+ views
Hint: Given \[\sin \left( \alpha +\beta \right)=1\] and \[\sin \left( \alpha -\beta \right)=\dfrac{1}{2}\]. we have to find the values of \[\tan \left( \alpha +2\beta \right)\] and \[\tan \left( 2\alpha +\beta \right)\]. Given the values of sine we have to find the angles \[\alpha \],\[\beta \]. Then we have to submit in the tangent and get the solution.
\[\sin \left( \alpha +\beta \right)=1\]
Complete step-by-step answer:
We know that value of sine is 1 when \[\theta \] is \[{{90}^{\circ }}\] in the given interval \[0\le \alpha ,\beta \le \dfrac{\pi }{2}\].
\[\left( \alpha +\beta \right)={{90}^{\circ }}\]. . . . . . . . . . . . . . . . . . . . . . . . (1)
Similarly \[\sin \left( \alpha -\beta \right)=\dfrac{1}{2}\]
We know that value of sine is \[\dfrac{1}{2}\] when \[\theta \]is \[{{30}^{\circ }}\] in the given interval \[0\le \alpha ,\beta \le \dfrac{\pi }{2}\].
\[\left( \alpha -\beta \right)={{30}^{\circ }}\]. . . . . . . . . . . . . . . . . . . . . . . . . (2)
Adding both 1 and 2 we get,
\[2\alpha ={{120}^{\circ }}\]
\[\alpha ={{60}^{\circ }}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
\[\beta ={{30}^{\circ }}\]. . . . . . . . . . . . . . . . . . . . . (b)
Now substituting the values in the in \[\tan \left( \alpha +2\beta \right)\] and \[\tan \left( 2\alpha +\beta \right)\]
\[\tan \left( \alpha +2\beta \right)\] = \[\tan \left( {{60}^{\circ }}+{{60}^{\circ }} \right)\]
\[=\tan \left( {{120}^{\circ }} \right)\]
\[=-\sqrt{3}\]
\[=-1.732\]
Now substituting the values in \[\tan \left( 2\alpha +\beta \right)\]
\[\tan \left( 2\alpha +\beta \right)\] = \[\tan \left( {{120}^{\circ }}+{{30}^{\circ }} \right)\]
\[=\tan ({{150}^{\circ }})\]
\[=\dfrac{-1}{\sqrt{3}}\]
\[=-0.577\]
Note: We have to take care that sine can have value 1 in other intervals also so check the intervals properly and solve. We can get a doubt like in the answer it was not following the interval, the given interval holds good only for the question given.
\[\sin \left( \alpha +\beta \right)=1\]
Complete step-by-step answer:
We know that value of sine is 1 when \[\theta \] is \[{{90}^{\circ }}\] in the given interval \[0\le \alpha ,\beta \le \dfrac{\pi }{2}\].
\[\left( \alpha +\beta \right)={{90}^{\circ }}\]. . . . . . . . . . . . . . . . . . . . . . . . (1)
Similarly \[\sin \left( \alpha -\beta \right)=\dfrac{1}{2}\]
We know that value of sine is \[\dfrac{1}{2}\] when \[\theta \]is \[{{30}^{\circ }}\] in the given interval \[0\le \alpha ,\beta \le \dfrac{\pi }{2}\].
\[\left( \alpha -\beta \right)={{30}^{\circ }}\]. . . . . . . . . . . . . . . . . . . . . . . . . (2)
Adding both 1 and 2 we get,
\[2\alpha ={{120}^{\circ }}\]
\[\alpha ={{60}^{\circ }}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . (a)
\[\beta ={{30}^{\circ }}\]. . . . . . . . . . . . . . . . . . . . . (b)
Now substituting the values in the in \[\tan \left( \alpha +2\beta \right)\] and \[\tan \left( 2\alpha +\beta \right)\]
\[\tan \left( \alpha +2\beta \right)\] = \[\tan \left( {{60}^{\circ }}+{{60}^{\circ }} \right)\]
\[=\tan \left( {{120}^{\circ }} \right)\]
\[=-\sqrt{3}\]
\[=-1.732\]
Now substituting the values in \[\tan \left( 2\alpha +\beta \right)\]
\[\tan \left( 2\alpha +\beta \right)\] = \[\tan \left( {{120}^{\circ }}+{{30}^{\circ }} \right)\]
\[=\tan ({{150}^{\circ }})\]
\[=\dfrac{-1}{\sqrt{3}}\]
\[=-0.577\]
Note: We have to take care that sine can have value 1 in other intervals also so check the intervals properly and solve. We can get a doubt like in the answer it was not following the interval, the given interval holds good only for the question given.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

