
If $\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right)$ , $0 < \alpha ,\beta < \pi $ , then find the relation between $\alpha $ and $\beta $ .
Answer
594.9k+ views
Hint: For solving this question firstly, we will apply the formula for $\sin C-\sin D$ . After that, we will use the results of equations like $\sin \theta =0$ and $\cos \theta =0$ to write the relation between $\alpha $ and $\beta $ in terms of a variable $n$ where $n$ is an integer. Then, we will consider the inequality $0 < \alpha ,\beta < \pi $ to write our final answer.
Complete step-by-step answer:
Given:
It is given that if $\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right)$ , $0 < \alpha ,\beta < \pi $ and we have to find the relation between $\alpha $ and $\beta $ .
Now, before we proceed we should know the following three formulas:
$\begin{align}
& \sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right).................\left( 1 \right) \\
& \sin \theta =0 \\
& \Rightarrow \theta =n\pi \text{ }\left( n\in I \right).....................................................\left( 2 \right) \\
& \cos \theta =0 \\
& \Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{2}\text{ }\left( n\in I \right).........................................\left( 3 \right) \\
\end{align}$
Now, as we have $\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right)$ . Then,
$\begin{align}
& \sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right) \\
& \Rightarrow \sin \left( \dfrac{2\pi }{3}-\alpha \right)-\sin \left( \dfrac{2\pi }{3}-\beta \right)=0 \\
\end{align}$
Now, we will use the formula from the equation (1). Then,
$\begin{align}
& \sin \left( \dfrac{2\pi }{3}-\alpha \right)-\sin \left( \dfrac{2\pi }{3}-\beta \right)=0 \\
& \Rightarrow 2\cos \left( \dfrac{{}^{2\pi }/{}_{3}-\alpha +{}^{2\pi }/{}_{3}-\beta }{2} \right)\sin \left( \dfrac{{}^{2\pi }/{}_{3}-\alpha -{}^{2\pi }/{}_{3}+\beta }{2} \right)=0 \\
& \Rightarrow 2\cos \left( \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2} \right)\sin \left( \dfrac{\beta -\alpha }{2} \right)=0 \\
\end{align}$
Now, from the above result we will have the following two results:
1. $\cos \left( \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2} \right)=0$
2. $\sin \left( \dfrac{\beta -\alpha }{2} \right)=0$
Now, at least one of the above results could be true so, we will solve both results separately.
1. $\cos \left( \dfrac{2\pi }{3}-\left( \alpha +\beta \right) \right)=0$ :
Now, using the formula from the equation (3). Then,
$\begin{align}
& \cos \left( \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2} \right)=0=0 \\
& \Rightarrow \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2}=\left( 2n+1 \right)\dfrac{\pi }{2} \\
& \Rightarrow -\dfrac{\left( \alpha +\beta \right)}{2}=n\pi +\dfrac{\pi }{2}-\dfrac{2\pi }{3} \\
& \Rightarrow -\dfrac{\left( \alpha +\beta \right)}{2}=n\pi -\dfrac{\pi }{6} \\
& \Rightarrow \alpha +\beta =\dfrac{\pi }{3}-2n\pi ..............\left( 4 \right) \\
\end{align}$
Now, we got $\alpha +\beta =\dfrac{\pi }{3}-2n\pi $ where $n$ is an integer. But as it is given that $0 < \alpha < \pi $ and $0 < \beta < \pi $ so, we can add inequality $0 < \alpha < \pi $ and $0 < \beta < \pi $ to get the range of values in which $\alpha +\beta $ lies. Then,
$\begin{align}
& 0 < \alpha < \pi \\
& 0 < \beta < \pi \\
& \Rightarrow 0 < \alpha +\beta < 2\pi \\
\end{align}$
Now, we can substitute $\alpha +\beta =\dfrac{\pi }{3}-2n\pi $ from equation (4), in the above inequality. Then,
$\begin{align}
& 0 < \alpha +\beta < 2\pi \\
& \Rightarrow 0 < \dfrac{\pi }{3}-2n\pi < 2\pi \\
\end{align}$
Now, we will subtract $\dfrac{\pi }{3}$ from each term in the above inequality. Then,
$\begin{align}
& 0 < \dfrac{\pi }{3}-2n\pi < 2\pi \\
& \Rightarrow -\dfrac{\pi }{3} < -2n\pi < 2\pi -\dfrac{\pi }{3} \\
& \Rightarrow -\dfrac{\pi }{3} < -2n\pi < \dfrac{5\pi }{3} \\
\end{align}$
Now, we will divide each term by $2\pi $ in the above inequality. Then,
$\begin{align}
& -\dfrac{\pi }{3} < -2n\pi < \dfrac{5\pi }{3} \\
& \Rightarrow -\dfrac{\pi }{3\times 2\pi } < -n < \dfrac{5\pi }{3\times 2\pi } \\
& \Rightarrow -\dfrac{1}{6} < -n < \dfrac{5}{6} \\
\end{align}$
Now, we multiply each term by $-1$ so, the inequality sign will be reversed. Then,
$\begin{align}
& -\dfrac{1}{6} < -n < \dfrac{5}{6} \\
& \Rightarrow \dfrac{1}{6} > n > -\dfrac{5}{6} \\
& \Rightarrow -\dfrac{5}{6} < n < \dfrac{1}{6} \\
\end{align}$
Now, from the above result, we can say that $n\in \left( -\dfrac{5}{6},\dfrac{1}{6} \right)$ and as we know that, $n$ is an integer. And between $-\dfrac{5}{6}$ and $\dfrac{1}{6}$ , $0$ is the only integer. So, the value of $n=0$ only for this case and we can put $n=0$ in equation (4). Then,
$\begin{align}
& \alpha +\beta =\dfrac{\pi }{3}-2n\pi \\
& \Rightarrow \alpha +\beta =\dfrac{\pi }{3}......................\left( 5 \right) \\
\end{align}$
2. $\sin \left( \dfrac{\beta -\alpha }{2} \right)=0$ :
Now, using the formula from the equation (2). Then,
$\begin{align}
& \sin \left( \dfrac{\beta -\alpha }{2} \right)=0 \\
& \Rightarrow \dfrac{\beta -\alpha }{2}=n\pi \\
& \Rightarrow \beta -\alpha =2n\pi ..............\left( 6 \right) \\
\end{align}$
Now, we got $\beta -\alpha =2n\pi $ where $n$ is an integer. But as it is given that $0 < \alpha < \pi $ so, we multiply each term by $-1$ in $0 < \alpha < \pi $ then, the inequality sign will be reversed. Then,
$\begin{align}
& 0 < \alpha < \pi \\
& \Rightarrow -\pi < -\alpha < 0 \\
\end{align}$
Now, as we know that $0 < \beta < \pi $ so, we can add inequality $-\pi < -\alpha < 0$ from the above with inequality $0 < \beta < \pi $ to get the range of values in which $\beta -\alpha $ lies. Then,
$\begin{align}
& -\pi < -\alpha < 0 \\
& 0 < \beta < \pi \\
& \Rightarrow -\pi < \beta -\alpha < \pi \\
\end{align}$
Now, we can substitute $\beta -\alpha =2n\pi $ from equation (6) in the above inequality. Then,
$\begin{align}
& -\pi < \beta -\alpha < \pi \\
& \Rightarrow -\pi < 2n\pi < \pi \\
\end{align}$
Now, we divide each term by $2\pi $ in the above inequality. Then,
$\begin{align}
& -\pi < 2n\pi < \pi \\
& \Rightarrow \dfrac{-\pi }{2\pi } < n < \dfrac{\pi }{2\pi } \\
& \Rightarrow -\dfrac{1}{2} < n < \dfrac{1}{2} \\
\end{align}$
Now, from the above result, we can say that $n\in \left( -\dfrac{1}{2},\dfrac{1}{2} \right)$ and as we know that, $n$ is an integer. And between $-\dfrac{1}{2}$ and $\dfrac{1}{2}$ , $0$ is the only integer. So, the value of $n=0$ only for this case and we can put $n=0$ in equation (6). Then,
$\begin{align}
& \beta -\alpha =2n\pi \\
& \Rightarrow \beta -\alpha =0 \\
& \Rightarrow \beta =\alpha ...........................\left( 7 \right) \\
\end{align}$
Now, from the equation (5) and equation (7), we have the following two relations between $\alpha $ and $\beta $ :
1. $\alpha +\beta =\dfrac{\pi }{3}$ .
2. $\beta =\alpha $ .
Thus, at least one of the above relation should be true if $\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right)$ , $0 < \alpha ,\beta < \pi $ .
Note: Here, the student should first try to understand what is asked in the problem. After that, we should apply the formula of $\sin C-\sin D$ correctly and in this question always remember while solving that it is given that $0 < \alpha ,\beta < \pi $ so, we should consider this inequality also to write our final answer. Moreover, always avoid calculation mistakes while solving the problem to get the correct answer.
Complete step-by-step answer:
Given:
It is given that if $\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right)$ , $0 < \alpha ,\beta < \pi $ and we have to find the relation between $\alpha $ and $\beta $ .
Now, before we proceed we should know the following three formulas:
$\begin{align}
& \sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right).................\left( 1 \right) \\
& \sin \theta =0 \\
& \Rightarrow \theta =n\pi \text{ }\left( n\in I \right).....................................................\left( 2 \right) \\
& \cos \theta =0 \\
& \Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{2}\text{ }\left( n\in I \right).........................................\left( 3 \right) \\
\end{align}$
Now, as we have $\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right)$ . Then,
$\begin{align}
& \sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right) \\
& \Rightarrow \sin \left( \dfrac{2\pi }{3}-\alpha \right)-\sin \left( \dfrac{2\pi }{3}-\beta \right)=0 \\
\end{align}$
Now, we will use the formula from the equation (1). Then,
$\begin{align}
& \sin \left( \dfrac{2\pi }{3}-\alpha \right)-\sin \left( \dfrac{2\pi }{3}-\beta \right)=0 \\
& \Rightarrow 2\cos \left( \dfrac{{}^{2\pi }/{}_{3}-\alpha +{}^{2\pi }/{}_{3}-\beta }{2} \right)\sin \left( \dfrac{{}^{2\pi }/{}_{3}-\alpha -{}^{2\pi }/{}_{3}+\beta }{2} \right)=0 \\
& \Rightarrow 2\cos \left( \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2} \right)\sin \left( \dfrac{\beta -\alpha }{2} \right)=0 \\
\end{align}$
Now, from the above result we will have the following two results:
1. $\cos \left( \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2} \right)=0$
2. $\sin \left( \dfrac{\beta -\alpha }{2} \right)=0$
Now, at least one of the above results could be true so, we will solve both results separately.
1. $\cos \left( \dfrac{2\pi }{3}-\left( \alpha +\beta \right) \right)=0$ :
Now, using the formula from the equation (3). Then,
$\begin{align}
& \cos \left( \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2} \right)=0=0 \\
& \Rightarrow \dfrac{2\pi }{3}-\dfrac{\left( \alpha +\beta \right)}{2}=\left( 2n+1 \right)\dfrac{\pi }{2} \\
& \Rightarrow -\dfrac{\left( \alpha +\beta \right)}{2}=n\pi +\dfrac{\pi }{2}-\dfrac{2\pi }{3} \\
& \Rightarrow -\dfrac{\left( \alpha +\beta \right)}{2}=n\pi -\dfrac{\pi }{6} \\
& \Rightarrow \alpha +\beta =\dfrac{\pi }{3}-2n\pi ..............\left( 4 \right) \\
\end{align}$
Now, we got $\alpha +\beta =\dfrac{\pi }{3}-2n\pi $ where $n$ is an integer. But as it is given that $0 < \alpha < \pi $ and $0 < \beta < \pi $ so, we can add inequality $0 < \alpha < \pi $ and $0 < \beta < \pi $ to get the range of values in which $\alpha +\beta $ lies. Then,
$\begin{align}
& 0 < \alpha < \pi \\
& 0 < \beta < \pi \\
& \Rightarrow 0 < \alpha +\beta < 2\pi \\
\end{align}$
Now, we can substitute $\alpha +\beta =\dfrac{\pi }{3}-2n\pi $ from equation (4), in the above inequality. Then,
$\begin{align}
& 0 < \alpha +\beta < 2\pi \\
& \Rightarrow 0 < \dfrac{\pi }{3}-2n\pi < 2\pi \\
\end{align}$
Now, we will subtract $\dfrac{\pi }{3}$ from each term in the above inequality. Then,
$\begin{align}
& 0 < \dfrac{\pi }{3}-2n\pi < 2\pi \\
& \Rightarrow -\dfrac{\pi }{3} < -2n\pi < 2\pi -\dfrac{\pi }{3} \\
& \Rightarrow -\dfrac{\pi }{3} < -2n\pi < \dfrac{5\pi }{3} \\
\end{align}$
Now, we will divide each term by $2\pi $ in the above inequality. Then,
$\begin{align}
& -\dfrac{\pi }{3} < -2n\pi < \dfrac{5\pi }{3} \\
& \Rightarrow -\dfrac{\pi }{3\times 2\pi } < -n < \dfrac{5\pi }{3\times 2\pi } \\
& \Rightarrow -\dfrac{1}{6} < -n < \dfrac{5}{6} \\
\end{align}$
Now, we multiply each term by $-1$ so, the inequality sign will be reversed. Then,
$\begin{align}
& -\dfrac{1}{6} < -n < \dfrac{5}{6} \\
& \Rightarrow \dfrac{1}{6} > n > -\dfrac{5}{6} \\
& \Rightarrow -\dfrac{5}{6} < n < \dfrac{1}{6} \\
\end{align}$
Now, from the above result, we can say that $n\in \left( -\dfrac{5}{6},\dfrac{1}{6} \right)$ and as we know that, $n$ is an integer. And between $-\dfrac{5}{6}$ and $\dfrac{1}{6}$ , $0$ is the only integer. So, the value of $n=0$ only for this case and we can put $n=0$ in equation (4). Then,
$\begin{align}
& \alpha +\beta =\dfrac{\pi }{3}-2n\pi \\
& \Rightarrow \alpha +\beta =\dfrac{\pi }{3}......................\left( 5 \right) \\
\end{align}$
2. $\sin \left( \dfrac{\beta -\alpha }{2} \right)=0$ :
Now, using the formula from the equation (2). Then,
$\begin{align}
& \sin \left( \dfrac{\beta -\alpha }{2} \right)=0 \\
& \Rightarrow \dfrac{\beta -\alpha }{2}=n\pi \\
& \Rightarrow \beta -\alpha =2n\pi ..............\left( 6 \right) \\
\end{align}$
Now, we got $\beta -\alpha =2n\pi $ where $n$ is an integer. But as it is given that $0 < \alpha < \pi $ so, we multiply each term by $-1$ in $0 < \alpha < \pi $ then, the inequality sign will be reversed. Then,
$\begin{align}
& 0 < \alpha < \pi \\
& \Rightarrow -\pi < -\alpha < 0 \\
\end{align}$
Now, as we know that $0 < \beta < \pi $ so, we can add inequality $-\pi < -\alpha < 0$ from the above with inequality $0 < \beta < \pi $ to get the range of values in which $\beta -\alpha $ lies. Then,
$\begin{align}
& -\pi < -\alpha < 0 \\
& 0 < \beta < \pi \\
& \Rightarrow -\pi < \beta -\alpha < \pi \\
\end{align}$
Now, we can substitute $\beta -\alpha =2n\pi $ from equation (6) in the above inequality. Then,
$\begin{align}
& -\pi < \beta -\alpha < \pi \\
& \Rightarrow -\pi < 2n\pi < \pi \\
\end{align}$
Now, we divide each term by $2\pi $ in the above inequality. Then,
$\begin{align}
& -\pi < 2n\pi < \pi \\
& \Rightarrow \dfrac{-\pi }{2\pi } < n < \dfrac{\pi }{2\pi } \\
& \Rightarrow -\dfrac{1}{2} < n < \dfrac{1}{2} \\
\end{align}$
Now, from the above result, we can say that $n\in \left( -\dfrac{1}{2},\dfrac{1}{2} \right)$ and as we know that, $n$ is an integer. And between $-\dfrac{1}{2}$ and $\dfrac{1}{2}$ , $0$ is the only integer. So, the value of $n=0$ only for this case and we can put $n=0$ in equation (6). Then,
$\begin{align}
& \beta -\alpha =2n\pi \\
& \Rightarrow \beta -\alpha =0 \\
& \Rightarrow \beta =\alpha ...........................\left( 7 \right) \\
\end{align}$
Now, from the equation (5) and equation (7), we have the following two relations between $\alpha $ and $\beta $ :
1. $\alpha +\beta =\dfrac{\pi }{3}$ .
2. $\beta =\alpha $ .
Thus, at least one of the above relation should be true if $\sin \left( {{120}^{0}}-\alpha \right)=\sin \left( {{120}^{0}}-\beta \right)$ , $0 < \alpha ,\beta < \pi $ .
Note: Here, the student should first try to understand what is asked in the problem. After that, we should apply the formula of $\sin C-\sin D$ correctly and in this question always remember while solving that it is given that $0 < \alpha ,\beta < \pi $ so, we should consider this inequality also to write our final answer. Moreover, always avoid calculation mistakes while solving the problem to get the correct answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

