
If \[\sin \alpha +\sin \beta =a\]and \[\cos \alpha +\cos \beta =b\], show that \[\sin (\alpha +\beta )=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\].
Answer
593.1k+ views
Hint: By applying the formula sum and difference of sines and cosines and then dividing the equations and applying the formula \[\sin \alpha +\sin \beta =2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\],\[\cos \alpha +\cos \beta =2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\] will arrive to the final solution.
Complete step-by-step answer:
Given
\[\sin \alpha +\sin \beta =a\] . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\cos \alpha +\cos \beta =b\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
By applying the formula to \[\sin \alpha +\sin \beta =a\]
The formula is \[\sin \alpha +\sin \beta =2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]
\[\cos \alpha +\cos \beta =2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]
From the formula we can write (1) and (2) as follows,
\[\sin \alpha +\sin \beta =2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=a\]
\[\cos \alpha +\cos \beta =2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=b\]
\[2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=a\]. . . . . . . . . . . . . . . . . . (3)
\[2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=b\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Dividing 3 with 4, (3\[\div \]4) we get
\[\tan \left( \dfrac{\alpha +\beta }{2} \right)=\dfrac{a}{b}\]
Now applying the formula we get
\[\sin (\alpha +\beta )=\dfrac{2\tan \left( \dfrac{\alpha +\beta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}\]
Now substituting the value of \[\tan \left( \dfrac{\alpha +\beta }{2} \right)\]in the above equation we get,
\[\sin (\alpha +\beta )=\dfrac{2\left( \dfrac{a}{b} \right)}{1+{{\left( \dfrac{a}{b} \right)}^{2}}}\]
\[=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\]
Hence showed that \[\sin (\alpha +\beta )=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\].
Note: To solve such types of problems all the related formulas should be handy. Also be careful about the signs in all the formulas. In the above equation division was made to simplify the terms and lead to the final answer. So smart moves lead to easy completion of answers.
Complete step-by-step answer:
Given
\[\sin \alpha +\sin \beta =a\] . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\cos \alpha +\cos \beta =b\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
By applying the formula to \[\sin \alpha +\sin \beta =a\]
The formula is \[\sin \alpha +\sin \beta =2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]
\[\cos \alpha +\cos \beta =2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]
From the formula we can write (1) and (2) as follows,
\[\sin \alpha +\sin \beta =2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=a\]
\[\cos \alpha +\cos \beta =2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=b\]
\[2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=a\]. . . . . . . . . . . . . . . . . . (3)
\[2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=b\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Dividing 3 with 4, (3\[\div \]4) we get
\[\tan \left( \dfrac{\alpha +\beta }{2} \right)=\dfrac{a}{b}\]
Now applying the formula we get
\[\sin (\alpha +\beta )=\dfrac{2\tan \left( \dfrac{\alpha +\beta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}\]
Now substituting the value of \[\tan \left( \dfrac{\alpha +\beta }{2} \right)\]in the above equation we get,
\[\sin (\alpha +\beta )=\dfrac{2\left( \dfrac{a}{b} \right)}{1+{{\left( \dfrac{a}{b} \right)}^{2}}}\]
\[=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\]
Hence showed that \[\sin (\alpha +\beta )=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\].
Note: To solve such types of problems all the related formulas should be handy. Also be careful about the signs in all the formulas. In the above equation division was made to simplify the terms and lead to the final answer. So smart moves lead to easy completion of answers.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

