
If \[\sin \alpha +\sin \beta =a\]and \[\cos \alpha +\cos \beta =b\], show that \[\sin (\alpha +\beta )=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\].
Answer
509.4k+ views
Hint: By applying the formula sum and difference of sines and cosines and then dividing the equations and applying the formula \[\sin \alpha +\sin \beta =2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\],\[\cos \alpha +\cos \beta =2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\] will arrive to the final solution.
Complete step-by-step answer:
Given
\[\sin \alpha +\sin \beta =a\] . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\cos \alpha +\cos \beta =b\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
By applying the formula to \[\sin \alpha +\sin \beta =a\]
The formula is \[\sin \alpha +\sin \beta =2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]
\[\cos \alpha +\cos \beta =2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]
From the formula we can write (1) and (2) as follows,
\[\sin \alpha +\sin \beta =2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=a\]
\[\cos \alpha +\cos \beta =2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=b\]
\[2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=a\]. . . . . . . . . . . . . . . . . . (3)
\[2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=b\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Dividing 3 with 4, (3\[\div \]4) we get
\[\tan \left( \dfrac{\alpha +\beta }{2} \right)=\dfrac{a}{b}\]
Now applying the formula we get
\[\sin (\alpha +\beta )=\dfrac{2\tan \left( \dfrac{\alpha +\beta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}\]
Now substituting the value of \[\tan \left( \dfrac{\alpha +\beta }{2} \right)\]in the above equation we get,
\[\sin (\alpha +\beta )=\dfrac{2\left( \dfrac{a}{b} \right)}{1+{{\left( \dfrac{a}{b} \right)}^{2}}}\]
\[=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\]
Hence showed that \[\sin (\alpha +\beta )=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\].
Note: To solve such types of problems all the related formulas should be handy. Also be careful about the signs in all the formulas. In the above equation division was made to simplify the terms and lead to the final answer. So smart moves lead to easy completion of answers.
Complete step-by-step answer:
Given
\[\sin \alpha +\sin \beta =a\] . . . . . . . . . . . . . . . . . . . . . . . . . (1)
\[\cos \alpha +\cos \beta =b\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
By applying the formula to \[\sin \alpha +\sin \beta =a\]
The formula is \[\sin \alpha +\sin \beta =2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]
\[\cos \alpha +\cos \beta =2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]
From the formula we can write (1) and (2) as follows,
\[\sin \alpha +\sin \beta =2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=a\]
\[\cos \alpha +\cos \beta =2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=b\]
\[2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=a\]. . . . . . . . . . . . . . . . . . (3)
\[2\cos \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)\]\[=b\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)
Dividing 3 with 4, (3\[\div \]4) we get
\[\tan \left( \dfrac{\alpha +\beta }{2} \right)=\dfrac{a}{b}\]
Now applying the formula we get
\[\sin (\alpha +\beta )=\dfrac{2\tan \left( \dfrac{\alpha +\beta }{2} \right)}{1+{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)}\]
Now substituting the value of \[\tan \left( \dfrac{\alpha +\beta }{2} \right)\]in the above equation we get,
\[\sin (\alpha +\beta )=\dfrac{2\left( \dfrac{a}{b} \right)}{1+{{\left( \dfrac{a}{b} \right)}^{2}}}\]
\[=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\]
Hence showed that \[\sin (\alpha +\beta )=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\].
Note: To solve such types of problems all the related formulas should be handy. Also be careful about the signs in all the formulas. In the above equation division was made to simplify the terms and lead to the final answer. So smart moves lead to easy completion of answers.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
