
If $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$ , show that
$\cos \left( {\alpha + \beta } \right) = \dfrac{{{b^2} - {a^2}}}{{{b^2} + {a^2}}}$
Answer
594k+ views
Hint: In this question use given equations and apply the division operation and also remember to use trigonometric identities $\sin C + \sin D = 2\sin \left( {\dfrac{{c + d}}{2}} \right)\cos \left( {\dfrac{{c - d}}{2}} \right)$ and $\cos C + \cos D = 2\cos \left( {\dfrac{{c + d}}{2}} \right)\cos \left( {\dfrac{{c - d}}{2}} \right)$, use this information to approach the solution of the problem.
Complete step-by-step answer:
Given that: $\sin \alpha + \sin \beta = a$---- (1)
And $\cos \alpha + \cos \beta = b$ ----- (2)
Let us divide equation (1) by equation (2)
$ \Rightarrow \dfrac{{\sin \alpha + \sin \beta }}{{\cos \alpha + \cos \beta }} = \dfrac{a}{b}$----- (3)
We know the identities of for addition of trigonometric terms which are:
$
\sin C + \sin D = 2\sin \left( {\dfrac{{c + d}}{2}} \right)\cos \left( {\dfrac{{c - d}}{2}} \right) \\
\cos C + \cos D = 2\cos \left( {\dfrac{{c + d}}{2}} \right)\cos \left( {\dfrac{{c - d}}{2}} \right) \\
$
Using the identities in equation (3) we get:
$
\because \dfrac{{\sin \alpha + \sin \beta }}{{\cos \alpha + \cos \beta }} = \dfrac{a}{b} \\
\Rightarrow \dfrac{{2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)}}{{2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)}} = \dfrac{a}{b} \\
$
Let us further simplify the result by cancelling the common terms in numerator and denominator
$
\Rightarrow \dfrac{{\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)}}{{\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)}} = \dfrac{a}{b} \\
\Rightarrow \tan \left( {\dfrac{{\alpha + \beta }}{2}} \right) = \dfrac{a}{b}........{\text{(4) }}\left[ {\because \dfrac{{\sin x}}{{\cos x}} = \tan x} \right] \\
$
In the RHS we have terms containing a and b but we need terms containing ${a^2}\& {b^2}$ , so we will use the identities to double angle.
As we know that:
$\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$
So, in the above identity substituting the value of\[\theta \] as \[\left( {\dfrac{{\alpha + \beta }}{2}} \right)\]
So, we get:
$\cos 2\left( {\dfrac{{\alpha + \beta }}{2}} \right) = \dfrac{{1 - {{\tan }^2}\left( {\dfrac{{\alpha + \beta }}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{{\alpha + \beta }}{2}} \right)}}$----- (5)
Substituting the value in equation (5) from equation (4) we get:
$
\Rightarrow \cos \left( {\alpha + \beta } \right) = \dfrac{{1 - {{\left( {\tan \left( {\dfrac{{\alpha + \beta }}{2}} \right)} \right)}^2}}}{{1 + {{\left( {\tan \left( {\dfrac{{\alpha + \beta }}{2}} \right)} \right)}^2}}} \\
\Rightarrow \cos \left( {\alpha + \beta } \right) = \dfrac{{1 - {{\left( {\dfrac{a}{b}} \right)}^2}}}{{1 + {{\left( {\dfrac{a}{b}} \right)}^2}}} \\
$
Now let us simplify the above term by taking LCM on RHS
$
\Rightarrow \cos \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{{b^2} - {a^2}}}{{{b^2}}}}}{{\dfrac{{{b^2} + {a^2}}}{{{b^2}}}}} \\
\Rightarrow \cos \left( {\alpha + \beta } \right) = \dfrac{{{b^2} - {a^2}}}{{{b^2} + {a^2}}} \\
$
Hence, the given trigonometric equation is proved.
Note: In order to solve such complex trigonometric problems with difference in angles in the given terms and the problem statement. Students must first identify the trigonometric identity connecting both of the angles. In order to solve such types of problems students must remember trigonometric identities to find an easy solution and should manipulate different identities in order to fetch the answer.
Complete step-by-step answer:
Given that: $\sin \alpha + \sin \beta = a$---- (1)
And $\cos \alpha + \cos \beta = b$ ----- (2)
Let us divide equation (1) by equation (2)
$ \Rightarrow \dfrac{{\sin \alpha + \sin \beta }}{{\cos \alpha + \cos \beta }} = \dfrac{a}{b}$----- (3)
We know the identities of for addition of trigonometric terms which are:
$
\sin C + \sin D = 2\sin \left( {\dfrac{{c + d}}{2}} \right)\cos \left( {\dfrac{{c - d}}{2}} \right) \\
\cos C + \cos D = 2\cos \left( {\dfrac{{c + d}}{2}} \right)\cos \left( {\dfrac{{c - d}}{2}} \right) \\
$
Using the identities in equation (3) we get:
$
\because \dfrac{{\sin \alpha + \sin \beta }}{{\cos \alpha + \cos \beta }} = \dfrac{a}{b} \\
\Rightarrow \dfrac{{2\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)}}{{2\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)\cos \left( {\dfrac{{\alpha - \beta }}{2}} \right)}} = \dfrac{a}{b} \\
$
Let us further simplify the result by cancelling the common terms in numerator and denominator
$
\Rightarrow \dfrac{{\sin \left( {\dfrac{{\alpha + \beta }}{2}} \right)}}{{\cos \left( {\dfrac{{\alpha + \beta }}{2}} \right)}} = \dfrac{a}{b} \\
\Rightarrow \tan \left( {\dfrac{{\alpha + \beta }}{2}} \right) = \dfrac{a}{b}........{\text{(4) }}\left[ {\because \dfrac{{\sin x}}{{\cos x}} = \tan x} \right] \\
$
In the RHS we have terms containing a and b but we need terms containing ${a^2}\& {b^2}$ , so we will use the identities to double angle.
As we know that:
$\cos 2\theta = \dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}$
So, in the above identity substituting the value of\[\theta \] as \[\left( {\dfrac{{\alpha + \beta }}{2}} \right)\]
So, we get:
$\cos 2\left( {\dfrac{{\alpha + \beta }}{2}} \right) = \dfrac{{1 - {{\tan }^2}\left( {\dfrac{{\alpha + \beta }}{2}} \right)}}{{1 + {{\tan }^2}\left( {\dfrac{{\alpha + \beta }}{2}} \right)}}$----- (5)
Substituting the value in equation (5) from equation (4) we get:
$
\Rightarrow \cos \left( {\alpha + \beta } \right) = \dfrac{{1 - {{\left( {\tan \left( {\dfrac{{\alpha + \beta }}{2}} \right)} \right)}^2}}}{{1 + {{\left( {\tan \left( {\dfrac{{\alpha + \beta }}{2}} \right)} \right)}^2}}} \\
\Rightarrow \cos \left( {\alpha + \beta } \right) = \dfrac{{1 - {{\left( {\dfrac{a}{b}} \right)}^2}}}{{1 + {{\left( {\dfrac{a}{b}} \right)}^2}}} \\
$
Now let us simplify the above term by taking LCM on RHS
$
\Rightarrow \cos \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{{b^2} - {a^2}}}{{{b^2}}}}}{{\dfrac{{{b^2} + {a^2}}}{{{b^2}}}}} \\
\Rightarrow \cos \left( {\alpha + \beta } \right) = \dfrac{{{b^2} - {a^2}}}{{{b^2} + {a^2}}} \\
$
Hence, the given trigonometric equation is proved.
Note: In order to solve such complex trigonometric problems with difference in angles in the given terms and the problem statement. Students must first identify the trigonometric identity connecting both of the angles. In order to solve such types of problems students must remember trigonometric identities to find an easy solution and should manipulate different identities in order to fetch the answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

