
If $\sin A + \sin B = x$ and $\cos A + \cos B = y$ then show $\tan \left( {\dfrac{{A - B}}{2}} \right) = \pm \sqrt {\dfrac{{4 - {x^2} - {y^2}}}{{{x^2} + {y^2}}}} $?
Answer
481.5k+ views
Hint: In this question, first we have to use the formula $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ to convert the angles into half-angles. Then we have to use the relation between the sine function and cosine function of ${\sin ^2}x + {\cos ^2}x = 1$ to get to the final answer.
Complete step-by-step answer:
In the above question, it is given that
$\sin A + \sin B = x$
Now use the formula $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ in the above equation.
$ \Rightarrow 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = x................\left( 1 \right)$
Also,
$\cos A + \cos B = y$
Now, use the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ in the above equation.
$ \Rightarrow 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = y.....................\left( 2 \right)$
Now, we have to remove the term of sine and cosine value of $\left( {\dfrac{{A + B}}{2}} \right)$ to get the value of $\tan \left( {\dfrac{{A - B}}{2}} \right)$.
Now squaring both sides in equation $\left( 1 \right)$.
$ \Rightarrow 4{\sin ^2}\left( {\dfrac{{A + B}}{2}} \right){\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}$
Now use the identity ${\sin ^2}x + {\cos ^2}x = 1$in the above equation.
$ \Rightarrow 4\left\{ {1 - {{\cos }^2}\left( {\dfrac{{A + B}}{2}} \right)} \right\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}..........\left( 3 \right)$
Now, squaring both sides in equation $\left( 2 \right)$.
$ \Rightarrow 4{\cos ^2}\left( {\dfrac{{A + B}}{2}} \right){\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {y^2}$
$ \Rightarrow {\cos ^2}\left( {\dfrac{{A + B}}{2}} \right) = \dfrac{{{y^2}}}{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right)}}.................\left( 4 \right)$
From $3rd\,and\,4th$ equation, we get
$ \Rightarrow 4\left\{ {1 - \dfrac{{{y^2}}}{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right)}}} \right\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}$
$ \Rightarrow 4\left\{ {\dfrac{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right) - {y^2}}}{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right)}}} \right\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}$
Now, cancel $4{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right)$ from numerator and denominator in left-hand side
$ \Rightarrow 4{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) - {y^2} = {x^2}$
Transpose ${y^2}$ to RHS.
$ \Rightarrow 4{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2} + {y^2}$
Now, divide both sides by $4$.
$ \Rightarrow {\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{{x^2} + {y^2}}}{4}$
Now use the identity $\cos x = \dfrac{1}{{\sec x}}$
$ \Rightarrow \dfrac{1}{{{{\sec }^2}\left( {\dfrac{{A - B}}{2}} \right)}} = \dfrac{{{x^2} + {y^2}}}{4}$
Now using cross-multiplication
$ \Rightarrow {\sec ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{4}{{{x^2} + {y^2}}}$
Now using the identity $1 + {\tan ^2}x = {\sec ^2}x$
$ \Rightarrow 1 + {\tan ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{4}{{{x^2} + {y^2}}}$
Now, transpose $1$ to RHS
$ \Rightarrow {\tan ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{4}{{{x^2} + {y^2}}} - 1$
Now taking LCM in right hand side
$ \Rightarrow {\tan ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{4 - {x^2} - {y^2}}}{{{x^2} + {y^2}}}$
Now taking root both sides, we get
$ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \pm \sqrt {\dfrac{{4 - {x^2} - {y^2}}}{{{x^2} + {y^2}}}} $
Hence proved.
Note: Formulas are the most important thing in trigonometry. Using some half angle- formula we can convert an expression with exponents to one without exponents, and whose angles are multiples of the original angle. It is to note that we get half-angle formulas from double angle formulas. Both \[sin{\text{ }}\left( {2A} \right)\] and \[cos{\text{ }}\left( {2A} \right)\] are obtained from the double angle formula for the cosine.
Complete step-by-step answer:
In the above question, it is given that
$\sin A + \sin B = x$
Now use the formula $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ in the above equation.
$ \Rightarrow 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = x................\left( 1 \right)$
Also,
$\cos A + \cos B = y$
Now, use the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ in the above equation.
$ \Rightarrow 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right) = y.....................\left( 2 \right)$
Now, we have to remove the term of sine and cosine value of $\left( {\dfrac{{A + B}}{2}} \right)$ to get the value of $\tan \left( {\dfrac{{A - B}}{2}} \right)$.
Now squaring both sides in equation $\left( 1 \right)$.
$ \Rightarrow 4{\sin ^2}\left( {\dfrac{{A + B}}{2}} \right){\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}$
Now use the identity ${\sin ^2}x + {\cos ^2}x = 1$in the above equation.
$ \Rightarrow 4\left\{ {1 - {{\cos }^2}\left( {\dfrac{{A + B}}{2}} \right)} \right\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}..........\left( 3 \right)$
Now, squaring both sides in equation $\left( 2 \right)$.
$ \Rightarrow 4{\cos ^2}\left( {\dfrac{{A + B}}{2}} \right){\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {y^2}$
$ \Rightarrow {\cos ^2}\left( {\dfrac{{A + B}}{2}} \right) = \dfrac{{{y^2}}}{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right)}}.................\left( 4 \right)$
From $3rd\,and\,4th$ equation, we get
$ \Rightarrow 4\left\{ {1 - \dfrac{{{y^2}}}{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right)}}} \right\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}$
$ \Rightarrow 4\left\{ {\dfrac{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right) - {y^2}}}{{4{{\cos }^2}\left( {\dfrac{{A - B}}{2}} \right)}}} \right\}{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2}$
Now, cancel $4{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right)$ from numerator and denominator in left-hand side
$ \Rightarrow 4{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) - {y^2} = {x^2}$
Transpose ${y^2}$ to RHS.
$ \Rightarrow 4{\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = {x^2} + {y^2}$
Now, divide both sides by $4$.
$ \Rightarrow {\cos ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{{x^2} + {y^2}}}{4}$
Now use the identity $\cos x = \dfrac{1}{{\sec x}}$
$ \Rightarrow \dfrac{1}{{{{\sec }^2}\left( {\dfrac{{A - B}}{2}} \right)}} = \dfrac{{{x^2} + {y^2}}}{4}$
Now using cross-multiplication
$ \Rightarrow {\sec ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{4}{{{x^2} + {y^2}}}$
Now using the identity $1 + {\tan ^2}x = {\sec ^2}x$
$ \Rightarrow 1 + {\tan ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{4}{{{x^2} + {y^2}}}$
Now, transpose $1$ to RHS
$ \Rightarrow {\tan ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{4}{{{x^2} + {y^2}}} - 1$
Now taking LCM in right hand side
$ \Rightarrow {\tan ^2}\left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{4 - {x^2} - {y^2}}}{{{x^2} + {y^2}}}$
Now taking root both sides, we get
$ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \pm \sqrt {\dfrac{{4 - {x^2} - {y^2}}}{{{x^2} + {y^2}}}} $
Hence proved.
Note: Formulas are the most important thing in trigonometry. Using some half angle- formula we can convert an expression with exponents to one without exponents, and whose angles are multiples of the original angle. It is to note that we get half-angle formulas from double angle formulas. Both \[sin{\text{ }}\left( {2A} \right)\] and \[cos{\text{ }}\left( {2A} \right)\] are obtained from the double angle formula for the cosine.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

