
If $\sin A + \cos {\text{ec}}A = 3$ then find the value of $\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}}$.
Answer
581.4k+ views
Hint:
As we know the condition that $\sin A + \cos {\text{ec}}A = 3$ and we also know that $\sin A.\cos {\text{ec}}A = 1$
Hence $\cos {\text{ec}}A = \dfrac{1}{{\sin A}}$ and by putting this value we can get the value of $\sin A$ and put it in $\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}}$ and we will get the answer.
Complete step by step solution:
We are given that $\sin A + \cos {\text{ec}}A = 3$$ - - - - (1)$
Now as we need to find the value of $\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}}$ so we need to find the value of $\sin A$ which can be found the following condition which says that $\sin A + \cos {\text{ec}}A = 3$
And we know that$\sin A.\cos {\text{ec}}A = 1$. So we can say that $\cos {\text{ec}}A = \dfrac{1}{{\sin A}}$ and therefore now by replacing the value of $\cos {\text{ec}}A$in the equation (1), we will get
$\sin A + \dfrac{1}{{\sin A}} = 3$
Upon taking LCM we get that
$\dfrac{{{{\sin }^2}A + 1}}{{\sin A}} = 3$
So we get that ${\sin ^2}x + 1 = 3\sin A$
We can write it as
${\sin ^2}x - 3\sin A + 1 = 0$
Hence we get the quadratic equation of the form $a{x^2} + bx + c = 0$ which takes two roots which are given by the formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here we are given that
${\sin ^2}x - 3\sin A + 1 = 0$
So $\sin A = \dfrac{{ - ( - 3) \pm \sqrt {{{( - 3)}^2} - 4(1)(1)} }}{{2(1)}}$
$\Rightarrow \sin A = \dfrac{{ - ( - 3) \pm \sqrt {{{( - 3)}^2} - 4(1)(1)} }}{{2(1)}}$
$\Rightarrow \sin A = \dfrac{{3 \pm \sqrt {9 - 4} }}{2}$
$\Rightarrow \sin A = \dfrac{{3 \pm \sqrt 5 }}{2}$
So we get two values of $\sin A$
$\Rightarrow \sin A = \dfrac{{3 + \sqrt 5 }}{2},\sin A = \dfrac{{3 - \sqrt 5 }}{2}$
But we know that $0 \leqslant \sin A \leqslant 1$
But we know that $\dfrac{{3 + \sqrt 5 }}{2} > 1$
Hence we get that $\sin A = \dfrac{{3 - \sqrt 5 }}{2}$
So we need to find the value of $\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}}$
$\Rightarrow {\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}}$
$\Rightarrow \sin A = \dfrac{{3 - \sqrt 5 }}{2}$
$\Rightarrow {\sin ^2}A = {\left( {\dfrac{{3 - \sqrt 5 }}{2}} \right)^2}$
Therefore upon squaring we get that
$\Rightarrow {\sin ^2}A = \left( {\dfrac{{{3^2} + {{(\sqrt 5 )}^2} - 2.3.\sqrt 5 }}{{{2^2}}}} \right)$
$\Rightarrow {\sin ^2}A = \left( {\dfrac{{9 + 5 - 6\sqrt 5 }}{4}} \right)$
$\Rightarrow {\sin ^2}A = \left( {\dfrac{{14 - 6\sqrt 5 }}{4}} \right) = \left( {\dfrac{{7 - 3\sqrt 5 }}{2}} \right)$
Now for $\dfrac{1}{{{{\sin }^2}A}}$$ = \dfrac{2}{{7 - 3\sqrt 5 }} \times \dfrac{{7 + 3\sqrt 5 }}{{7 + 3\sqrt 5 }}$
On rationalising we get that
$\dfrac{1}{{{{\sin }^2}A}}$$ = \dfrac{{2(7 + 3\sqrt 5 )}}{{49 - 45}} = \dfrac{{2(7 + 3\sqrt 5 )}}{4} = \dfrac{{(7 + 3\sqrt 5 )}}{2}$
Now we need to find the value of ${\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}}$
So as we have got ${\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}}$$ = \left( {\dfrac{{7 - 3\sqrt 5 }}{2}} \right) + \left( {\dfrac{{7 + 3\sqrt 5 }}{2}} \right)$
$ = \left( {\dfrac{{7 - 3\sqrt 5 + 7 + 3\sqrt 5 }}{2}} \right)$
$ = \left( {\dfrac{{14}}{2}} \right) = 7$
Note:
We can also solve it in this way that as we know
$\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}}$$ = {\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}} = {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A$
And we are given that
$\sin A + \cos {\text{ec}}A = 3$
Upon squaring both sides we get that
$
\Rightarrow {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A + 2\sin A.\cos {\text{ec}}A = 9 \\
\Rightarrow {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A + 2 = 9 \\
\Rightarrow {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A = 7 \\
$
As we know the condition that $\sin A + \cos {\text{ec}}A = 3$ and we also know that $\sin A.\cos {\text{ec}}A = 1$
Hence $\cos {\text{ec}}A = \dfrac{1}{{\sin A}}$ and by putting this value we can get the value of $\sin A$ and put it in $\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}}$ and we will get the answer.
Complete step by step solution:
We are given that $\sin A + \cos {\text{ec}}A = 3$$ - - - - (1)$
Now as we need to find the value of $\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}}$ so we need to find the value of $\sin A$ which can be found the following condition which says that $\sin A + \cos {\text{ec}}A = 3$
And we know that$\sin A.\cos {\text{ec}}A = 1$. So we can say that $\cos {\text{ec}}A = \dfrac{1}{{\sin A}}$ and therefore now by replacing the value of $\cos {\text{ec}}A$in the equation (1), we will get
$\sin A + \dfrac{1}{{\sin A}} = 3$
Upon taking LCM we get that
$\dfrac{{{{\sin }^2}A + 1}}{{\sin A}} = 3$
So we get that ${\sin ^2}x + 1 = 3\sin A$
We can write it as
${\sin ^2}x - 3\sin A + 1 = 0$
Hence we get the quadratic equation of the form $a{x^2} + bx + c = 0$ which takes two roots which are given by the formula
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Here we are given that
${\sin ^2}x - 3\sin A + 1 = 0$
So $\sin A = \dfrac{{ - ( - 3) \pm \sqrt {{{( - 3)}^2} - 4(1)(1)} }}{{2(1)}}$
$\Rightarrow \sin A = \dfrac{{ - ( - 3) \pm \sqrt {{{( - 3)}^2} - 4(1)(1)} }}{{2(1)}}$
$\Rightarrow \sin A = \dfrac{{3 \pm \sqrt {9 - 4} }}{2}$
$\Rightarrow \sin A = \dfrac{{3 \pm \sqrt 5 }}{2}$
So we get two values of $\sin A$
$\Rightarrow \sin A = \dfrac{{3 + \sqrt 5 }}{2},\sin A = \dfrac{{3 - \sqrt 5 }}{2}$
But we know that $0 \leqslant \sin A \leqslant 1$
But we know that $\dfrac{{3 + \sqrt 5 }}{2} > 1$
Hence we get that $\sin A = \dfrac{{3 - \sqrt 5 }}{2}$
So we need to find the value of $\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}}$
$\Rightarrow {\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}}$
$\Rightarrow \sin A = \dfrac{{3 - \sqrt 5 }}{2}$
$\Rightarrow {\sin ^2}A = {\left( {\dfrac{{3 - \sqrt 5 }}{2}} \right)^2}$
Therefore upon squaring we get that
$\Rightarrow {\sin ^2}A = \left( {\dfrac{{{3^2} + {{(\sqrt 5 )}^2} - 2.3.\sqrt 5 }}{{{2^2}}}} \right)$
$\Rightarrow {\sin ^2}A = \left( {\dfrac{{9 + 5 - 6\sqrt 5 }}{4}} \right)$
$\Rightarrow {\sin ^2}A = \left( {\dfrac{{14 - 6\sqrt 5 }}{4}} \right) = \left( {\dfrac{{7 - 3\sqrt 5 }}{2}} \right)$
Now for $\dfrac{1}{{{{\sin }^2}A}}$$ = \dfrac{2}{{7 - 3\sqrt 5 }} \times \dfrac{{7 + 3\sqrt 5 }}{{7 + 3\sqrt 5 }}$
On rationalising we get that
$\dfrac{1}{{{{\sin }^2}A}}$$ = \dfrac{{2(7 + 3\sqrt 5 )}}{{49 - 45}} = \dfrac{{2(7 + 3\sqrt 5 )}}{4} = \dfrac{{(7 + 3\sqrt 5 )}}{2}$
Now we need to find the value of ${\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}}$
So as we have got ${\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}}$$ = \left( {\dfrac{{7 - 3\sqrt 5 }}{2}} \right) + \left( {\dfrac{{7 + 3\sqrt 5 }}{2}} \right)$
$ = \left( {\dfrac{{7 - 3\sqrt 5 + 7 + 3\sqrt 5 }}{2}} \right)$
$ = \left( {\dfrac{{14}}{2}} \right) = 7$
Note:
We can also solve it in this way that as we know
$\dfrac{{{{\sin }^4}A + 1}}{{{{\sin }^2}A}}$$ = {\sin ^2}A + \dfrac{1}{{{{\sin }^2}A}} = {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A$
And we are given that
$\sin A + \cos {\text{ec}}A = 3$
Upon squaring both sides we get that
$
\Rightarrow {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A + 2\sin A.\cos {\text{ec}}A = 9 \\
\Rightarrow {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A + 2 = 9 \\
\Rightarrow {\sin ^2}A + {\text{cose}}{{\text{c}}^2}A = 7 \\
$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

