
If $\sin (A+B)=\sin A\cos B+\cos A\sin B$ and $\cos (A-B)=\cos A\cos B+\sin A\sin B$, find the values of $(i)\sin {{75}^{\circ }}$ and $(ii)\cos {{15}^{\circ }}$.
Answer
608.7k+ views
Hint: Assume angle A and B such that their sum is 75 degrees and their difference is 15 degrees. Now, form two linear equations using this information and determine the values of A and B. Now, use the relation provided in the question: $\sin (A+B)=\sin A\cos B+\cos A\sin B$ to determine the value of $\sin {{75}^{\circ }}$ and $\cos (A-B)=\cos A\cos B+\sin A\sin B$ to determine the value of $\cos {{15}^{\circ }}$.
Complete step-by-step answer:
We have to find the value of $\sin {{75}^{\circ }}$ and $\cos {{15}^{\circ }}$ by using the identities: $\sin (A+B)=\sin A\cos B+\cos A\sin B$ and $\cos (A-B)=\cos A\cos B+\sin A\sin B$ respectively.
On comparing the above equations, we get,
$\begin{align}
& A+B={{75}^{\circ }}.....................(i) \\
& A-B={{15}^{\circ }}......................(ii) \\
\end{align}$
Let us solve these two equations.
Adding these two equations, we get,
$\begin{align}
& 2A={{90}^{\circ }} \\
& \Rightarrow A={{45}^{\circ }} \\
\end{align}$
Substituting, $A={{45}^{\circ }}$ in equation (ii), we get,
$\begin{align}
& {{45}^{\circ }}+B={{75}^{\circ }} \\
& \Rightarrow B={{75}^{\circ }}-{{45}^{\circ }} \\
& \Rightarrow B={{30}^{\circ }} \\
\end{align}$
Now, let us substitute these values in the given identities.
(i) $\sin (A+B)=\sin A\cos B+\cos A\sin B$
$\begin{align}
& \Rightarrow \sin ({{45}^{\circ }}+{{30}^{\circ }})=\sin {{45}^{\circ }}\cos {{30}^{\circ }}+\cos
{{45}^{\circ }}\sin {{30}^{\circ }} \\
& \Rightarrow \sin ({{75}^{\circ }})=\sin {{45}^{\circ }}\cos {{30}^{\circ }}+\cos {{45}^{\circ
}}\sin {{30}^{\circ }} \\
\end{align}$
We know that, $\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\sin {{30}^{\circ
}}=\dfrac{1}{2}\text{ and }\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$. Substituting these in the
above relation, we get,
\[\begin{align}
& \sin ({{75}^{\circ }})=\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{\sqrt{2}}\times
\dfrac{1}{2} \\
& \Rightarrow \sin ({{75}^{\circ }})=\dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{1}{2\sqrt{2}} \\
& \Rightarrow \sin ({{75}^{\circ }})=\dfrac{\sqrt{3}+1}{2\sqrt{2}} \\
\end{align}\]
(ii) $\cos (A-B)=\cos A\cos B+\sin A\sin B$
$\begin{align}
& \Rightarrow \cos ({{45}^{\circ }}-{{30}^{\circ }})=\cos {{45}^{\circ }}\cos {{30}^{\circ }}+\sin {{45}^{\circ }}\sin {{30}^{\circ }} \\
& \Rightarrow \sin ({{15}^{\circ }})=\cos {{45}^{\circ }}\cos {{30}^{\circ }}+\cos {{45}^{\circ }}\sin {{30}^{\circ }} \\
& \Rightarrow \sin ({{15}^{\circ }})=\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{\sqrt{2}}\times \dfrac{1}{2} \\
& \Rightarrow \sin ({{15}^{\circ }})=\dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{1}{2\sqrt{2}} \\
& \Rightarrow \sin ({{15}^{\circ }})=\dfrac{\sqrt{3}+1}{2\sqrt{2}} \\
\end{align}$
Note: One may note that we are getting the same values of the two expressions. This is because 15 degrees and 75 degrees are complement of each other, that is, their sum is 90 degrees. Therefore, $\sin {{75}^{\circ }}=\cos \left( {{90}^{\circ }}-{{75}^{\circ }} \right)=\cos {{15}^{\circ }}$. So, basically we do not need to calculate the value of expression (ii) using the formula. But here, it is said that we have to use the given relation, so we have not applied the complementary angle rule.
Complete step-by-step answer:
We have to find the value of $\sin {{75}^{\circ }}$ and $\cos {{15}^{\circ }}$ by using the identities: $\sin (A+B)=\sin A\cos B+\cos A\sin B$ and $\cos (A-B)=\cos A\cos B+\sin A\sin B$ respectively.
On comparing the above equations, we get,
$\begin{align}
& A+B={{75}^{\circ }}.....................(i) \\
& A-B={{15}^{\circ }}......................(ii) \\
\end{align}$
Let us solve these two equations.
Adding these two equations, we get,
$\begin{align}
& 2A={{90}^{\circ }} \\
& \Rightarrow A={{45}^{\circ }} \\
\end{align}$
Substituting, $A={{45}^{\circ }}$ in equation (ii), we get,
$\begin{align}
& {{45}^{\circ }}+B={{75}^{\circ }} \\
& \Rightarrow B={{75}^{\circ }}-{{45}^{\circ }} \\
& \Rightarrow B={{30}^{\circ }} \\
\end{align}$
Now, let us substitute these values in the given identities.
(i) $\sin (A+B)=\sin A\cos B+\cos A\sin B$
$\begin{align}
& \Rightarrow \sin ({{45}^{\circ }}+{{30}^{\circ }})=\sin {{45}^{\circ }}\cos {{30}^{\circ }}+\cos
{{45}^{\circ }}\sin {{30}^{\circ }} \\
& \Rightarrow \sin ({{75}^{\circ }})=\sin {{45}^{\circ }}\cos {{30}^{\circ }}+\cos {{45}^{\circ
}}\sin {{30}^{\circ }} \\
\end{align}$
We know that, $\sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\sin {{30}^{\circ
}}=\dfrac{1}{2}\text{ and }\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$. Substituting these in the
above relation, we get,
\[\begin{align}
& \sin ({{75}^{\circ }})=\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{\sqrt{2}}\times
\dfrac{1}{2} \\
& \Rightarrow \sin ({{75}^{\circ }})=\dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{1}{2\sqrt{2}} \\
& \Rightarrow \sin ({{75}^{\circ }})=\dfrac{\sqrt{3}+1}{2\sqrt{2}} \\
\end{align}\]
(ii) $\cos (A-B)=\cos A\cos B+\sin A\sin B$
$\begin{align}
& \Rightarrow \cos ({{45}^{\circ }}-{{30}^{\circ }})=\cos {{45}^{\circ }}\cos {{30}^{\circ }}+\sin {{45}^{\circ }}\sin {{30}^{\circ }} \\
& \Rightarrow \sin ({{15}^{\circ }})=\cos {{45}^{\circ }}\cos {{30}^{\circ }}+\cos {{45}^{\circ }}\sin {{30}^{\circ }} \\
& \Rightarrow \sin ({{15}^{\circ }})=\dfrac{1}{\sqrt{2}}\times \dfrac{\sqrt{3}}{2}+\dfrac{1}{\sqrt{2}}\times \dfrac{1}{2} \\
& \Rightarrow \sin ({{15}^{\circ }})=\dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{1}{2\sqrt{2}} \\
& \Rightarrow \sin ({{15}^{\circ }})=\dfrac{\sqrt{3}+1}{2\sqrt{2}} \\
\end{align}$
Note: One may note that we are getting the same values of the two expressions. This is because 15 degrees and 75 degrees are complement of each other, that is, their sum is 90 degrees. Therefore, $\sin {{75}^{\circ }}=\cos \left( {{90}^{\circ }}-{{75}^{\circ }} \right)=\cos {{15}^{\circ }}$. So, basically we do not need to calculate the value of expression (ii) using the formula. But here, it is said that we have to use the given relation, so we have not applied the complementary angle rule.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

