
If $ \sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } = \dfrac{1}{{2a}} $ . Find $ a $
Answer
503.1k+ views
Hint: To find $a$, first we should solve the left-hand side and then equating the value obtained on the left-hand side, we will be able to find the value of $a$. To simplify the left-hand side, we will be using a cofunction identity: $\sin x = \cos (90 - x)$ and a double angle formula: $\sin 2x = 2\sin x\cos x$.
Complete step by step solution:
The given question is $ \sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } = \dfrac{1}{{2a}} $ . We have to find the value of $ a $ .
First, let us only consider Left-hand side,
That is, $ \sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } $
To this let us multiply and divide by $ 2\cos {6^\circ } $
$ \Rightarrow \dfrac{{2\cos {6^\circ }\sin {6^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
We will be clubbing the first 3 terms and rearranging them in the numerator,
$ \Rightarrow \dfrac{{(2\sin {6^\circ }\cos {6^ \circ })\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
This was done so that we could apply double angle formula, that is $ \sin 2x = 2\sin x\cos x $
So, the above equation becomes,
$ \Rightarrow \dfrac{{(\sin 2({6^ \circ }))\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
From cofunction identity, we know that, $ \sin x = \cos (90 - x) $
So, $ \sin {78^\circ } $ can be written as:
\[
\sin {78^\circ } = \cos {(90 - 78)^\circ } \\
\Rightarrow \sin {78^\circ } = \cos {12^\circ } \;
\]
Substituting this in $ \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $ , we get:
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\cos {{12}^\circ }}}{{2\cos {6^\circ }}} $
Again, rearranging the terms, we get
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\cos {{12}^\circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{2\cos {6^\circ }}} $
Let us again multiply and divide by $ 2 $ ,
$ \Rightarrow \dfrac{{2\sin {{12}^ \circ }\cos {{12}^\circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{2 \times 2\cos {6^\circ }}} $
We shall again make use of double angle formula $ \sin 2x = 2\sin x\cos x $
$
\Rightarrow \dfrac{{\sin 2 \times{{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} \;
$
Following the same procedure as earlier, we may write $ \sin 66^\circ $ as
$
\sin 66^\circ = \cos (90 - 66) \\
\Rightarrow \sin 66^\circ = \cos {24^\circ } \;
$
Using this, $ \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} $ becomes:
$ \Rightarrow \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\cos {{24}^\circ }}}{{4\cos {6^\circ }}} $
Again, multiplying and dividing by $ 2 $ and rearranging the terms, we write:
\[ \Rightarrow \dfrac{{2\sin {{24}^ \circ }\cos {{24}^\circ }\sin {{42}^\circ }}}{{2 \times 4\cos {6^\circ }}}\]
We will use double angle formula $ \sin 2x = 2\sin x\cos x $
\[
\Rightarrow \dfrac{{\sin 2 \times{{24}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{48}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}} \;
\]
$ \sin {48^\circ } $ can again be written as:
$
\sin {48^\circ } = \cos {(90 - 48)^\circ } \\
\Rightarrow \sin {48^\circ } = \cos {42^\circ } \;
$
On substituting this, we get
\[\dfrac{{\cos {{42}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}}\]
Multiplying and dividing by $ 2 $ ,
\[\dfrac{{2\sin {{42}^\circ }\cos {{42}^ \circ }}}{{2 \times 8\cos {6^\circ }}}\]
using double angle formula $ \sin 2x = 2\sin x\cos x $ , we get:
\[
\dfrac{{\sin 2 \times{{42}^\circ }}}{{16\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{84}^\circ }}}{{16\cos {6^\circ }}} \;
\]
$ \sin {84^\circ } $ can be written as
$
\sin {84^\circ } = \cos {(90 - 84)^\circ } \\
\Rightarrow \sin {84^\circ } = \cos {6^\circ } \;
$
Substitute this in the previous step,
\[ \Rightarrow \dfrac{{\cos {6^\circ }}}{{16\cos {6^\circ }}}\]
Since, \[\cos {6^\circ }\] is a common term in both numerator and denominator, they get cancelled off.
Thus, in the left-hand side we have, $ \dfrac{1}{{16}} $
Equating left-hand side and right-hand side, we get:
$ \dfrac{1}{{16}} = \dfrac{1}{{2a}} $
Taking reciprocal of both the sides and rearranging them, we get
$ 2a = 16 $
Dividing both the sides by $ 2 $ ,
$
\Rightarrow \dfrac{{2a}}{2} = \dfrac{{16}}{2} \\
\Rightarrow a = 8 \;
$
Thus, the value of $ a $ is $ 8 $ .
So, the correct answer is “a=8”.
Note: Solving the above given problem using the transformation formula $ \sin A\sin B = \dfrac{1}{2}\left[ {\cos (A - B) - \cos (A + B)} \right] $ will make the solution more complicated. Hence, it is recommended to follow the above method to solve these types of problems.
Complete step by step solution:
The given question is $ \sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } = \dfrac{1}{{2a}} $ . We have to find the value of $ a $ .
First, let us only consider Left-hand side,
That is, $ \sin {6^ \circ }\sin {42^\circ }\sin {66^\circ }\sin {78^\circ } $
To this let us multiply and divide by $ 2\cos {6^\circ } $
$ \Rightarrow \dfrac{{2\cos {6^\circ }\sin {6^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
We will be clubbing the first 3 terms and rearranging them in the numerator,
$ \Rightarrow \dfrac{{(2\sin {6^\circ }\cos {6^ \circ })\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
This was done so that we could apply double angle formula, that is $ \sin 2x = 2\sin x\cos x $
So, the above equation becomes,
$ \Rightarrow \dfrac{{(\sin 2({6^ \circ }))\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $
From cofunction identity, we know that, $ \sin x = \cos (90 - x) $
So, $ \sin {78^\circ } $ can be written as:
\[
\sin {78^\circ } = \cos {(90 - 78)^\circ } \\
\Rightarrow \sin {78^\circ } = \cos {12^\circ } \;
\]
Substituting this in $ \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\sin {{78}^\circ }}}{{2\cos {6^\circ }}} $ , we get:
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }\cos {{12}^\circ }}}{{2\cos {6^\circ }}} $
Again, rearranging the terms, we get
$ \Rightarrow \dfrac{{\sin {{12}^ \circ }\cos {{12}^\circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{2\cos {6^\circ }}} $
Let us again multiply and divide by $ 2 $ ,
$ \Rightarrow \dfrac{{2\sin {{12}^ \circ }\cos {{12}^\circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{2 \times 2\cos {6^\circ }}} $
We shall again make use of double angle formula $ \sin 2x = 2\sin x\cos x $
$
\Rightarrow \dfrac{{\sin 2 \times{{12}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} \;
$
Following the same procedure as earlier, we may write $ \sin 66^\circ $ as
$
\sin 66^\circ = \cos (90 - 66) \\
\Rightarrow \sin 66^\circ = \cos {24^\circ } \;
$
Using this, $ \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\sin {{66}^\circ }}}{{4\cos {6^\circ }}} $ becomes:
$ \Rightarrow \dfrac{{\sin {{24}^ \circ }\sin {{42}^\circ }\cos {{24}^\circ }}}{{4\cos {6^\circ }}} $
Again, multiplying and dividing by $ 2 $ and rearranging the terms, we write:
\[ \Rightarrow \dfrac{{2\sin {{24}^ \circ }\cos {{24}^\circ }\sin {{42}^\circ }}}{{2 \times 4\cos {6^\circ }}}\]
We will use double angle formula $ \sin 2x = 2\sin x\cos x $
\[
\Rightarrow \dfrac{{\sin 2 \times{{24}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{48}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}} \;
\]
$ \sin {48^\circ } $ can again be written as:
$
\sin {48^\circ } = \cos {(90 - 48)^\circ } \\
\Rightarrow \sin {48^\circ } = \cos {42^\circ } \;
$
On substituting this, we get
\[\dfrac{{\cos {{42}^ \circ }\sin {{42}^\circ }}}{{8\cos {6^\circ }}}\]
Multiplying and dividing by $ 2 $ ,
\[\dfrac{{2\sin {{42}^\circ }\cos {{42}^ \circ }}}{{2 \times 8\cos {6^\circ }}}\]
using double angle formula $ \sin 2x = 2\sin x\cos x $ , we get:
\[
\dfrac{{\sin 2 \times{{42}^\circ }}}{{16\cos {6^\circ }}} \\
\Rightarrow \dfrac{{\sin {{84}^\circ }}}{{16\cos {6^\circ }}} \;
\]
$ \sin {84^\circ } $ can be written as
$
\sin {84^\circ } = \cos {(90 - 84)^\circ } \\
\Rightarrow \sin {84^\circ } = \cos {6^\circ } \;
$
Substitute this in the previous step,
\[ \Rightarrow \dfrac{{\cos {6^\circ }}}{{16\cos {6^\circ }}}\]
Since, \[\cos {6^\circ }\] is a common term in both numerator and denominator, they get cancelled off.
Thus, in the left-hand side we have, $ \dfrac{1}{{16}} $
Equating left-hand side and right-hand side, we get:
$ \dfrac{1}{{16}} = \dfrac{1}{{2a}} $
Taking reciprocal of both the sides and rearranging them, we get
$ 2a = 16 $
Dividing both the sides by $ 2 $ ,
$
\Rightarrow \dfrac{{2a}}{2} = \dfrac{{16}}{2} \\
\Rightarrow a = 8 \;
$
Thus, the value of $ a $ is $ 8 $ .
So, the correct answer is “a=8”.
Note: Solving the above given problem using the transformation formula $ \sin A\sin B = \dfrac{1}{2}\left[ {\cos (A - B) - \cos (A + B)} \right] $ will make the solution more complicated. Hence, it is recommended to follow the above method to solve these types of problems.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

