
If \[\sin 27^\circ = p\], then the value of \[\sqrt {1 + \sin 36^\circ } \]
Answer
540.3k+ views
Hint:
Here, we will use the trigonometric identities of sum of sine and cosine function and solve it further to get the form of the expression that needs to be found out. We will then simplify the equation further using trigonometric identities to get the required value. Trigonometric equation is defined as an equation involving the trigonometric ratios. Trigonometric identity is an equation which is always true.
Formula Used:
We will use the following formulas:
1) Trigonometric Identity: \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
2) Trigonometric Identity: \[\sin 2\theta = 2\sin \theta \cos \theta \]
3) Trigonometric Identity: \[\sin \theta = \sin \left( {90^\circ - x} \right)\]
4) Trigonometric Identity: \[\sin \left( {90^\circ - x} \right) = \cos x\]
5) Trigonometric Identity: \[\sin \left( {90^\circ + x} \right) = \cos x\]
6) Trigonometric Identity: \[\cos x = \sqrt {1 + \sin x} \]
Complete step by step solution:
We are given that \[\sin 27^\circ = p\].
We know that \[{\left( {\sin \theta + \cos \theta } \right)^2} = {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta \].
By substituting the trigonometric identity \[\sin 2\theta = 2\sin \theta \cos \theta \] and \[{\sin ^2}\theta + {\cos ^2}\theta = 1\], we get
\[ \Rightarrow {\left( {\sin \theta + \cos \theta } \right)^2} = 1 + \sin 2\theta \]
By substituting the values of \[\theta = 27^\circ \] , we get
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \sin \left( {2 \cdot 27} \right)^\circ \]
By multiplying the terms, we get
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \sin 54^\circ \]
By using the trigonometric identity \[\sin \left( {90^\circ - x} \right) = \cos x\], we get
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \sin \left( {90^\circ - 36^\circ } \right)\]
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \cos 36^\circ \]
We know that \[\cos 36^\circ = \dfrac{{1 + \sqrt 5 }}{4}\]
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \dfrac{{1 + \sqrt 5 }}{4}\]
By taking the L.C.M, we get
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 \times \dfrac{4}{4} + \dfrac{{1 + \sqrt 5 }}{4}\]
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = \dfrac{{5 + \sqrt 5 }}{4}\]
Taking square root on both the sides, we get
\[ \Rightarrow \left( {\sin 27^\circ + \cos 27^\circ } \right) = \sqrt {\dfrac{{5 + \sqrt 5 }}{4}} = 1 + \cos 36^\circ \] ……………………………………………………….\[\left( 1 \right)\]
By using the trigonometric identity, we get
\[ \Rightarrow {\left( {\sin \theta - \cos \theta } \right)^2} = {\sin ^2}\theta + {\cos ^2}\theta - 2\sin \theta \cos \theta \]
By substituting the trigonometric identity, we get
\[ \Rightarrow {\left( {\sin \theta - \cos \theta } \right)^2} = 1 - \sin 2\theta \]
By substituting the values of \[\theta = 27^\circ \] , we get
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \sin 2 \cdot 27^\circ \]
By multiplying the terms, we get
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \sin 54^\circ \]
By using the trigonometric identity, we get
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \sin \left( {90^\circ - 36^\circ } \right)\]
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \cos 36^\circ \]
We know that \[\cos 36^\circ = \dfrac{{1 + \sqrt 5 }}{4}\]
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \dfrac{{1 + \sqrt 5 }}{4}\]
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 \times \dfrac{4}{4} - \dfrac{{1 + \sqrt 5 }}{4}\]
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = \dfrac{{3 - \sqrt 5 }}{4}\]
Taking square root on both the sides, we get
\[ \Rightarrow \left( {\sin 27^\circ - \cos 27^\circ } \right) = \sqrt {\dfrac{{3 - \sqrt 5 }}{4}} = 1 - \cos 36^\circ \]………………………………………………..\[\left( 2 \right)\]
By subtracting these equations, we get
\[ \Rightarrow 1 + \cos 36^\circ - 1 + \cos 36^\circ = \sqrt {\dfrac{{5 + \sqrt 5 }}{4}} - \sqrt {\dfrac{{3 - \sqrt 5 }}{4}} \]
\[ \Rightarrow 2\cos 36^\circ = \dfrac{1}{2}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right]\]
\[ \Rightarrow \cos 36^\circ = \dfrac{1}{4}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right]\]
By using the trigonometric identity, we get
\[ \Rightarrow \sqrt {1 + \sin 36^\circ } = \dfrac{1}{4}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right]\]
Therefore, the value of \[\sqrt {1 + \sin 36^\circ } \] is \[\dfrac{1}{4}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right]\].
Note:
We should know that we have many trigonometric identities which are related to all the other trigonometric equations. We should note that sine and tangent are odd functions since both the functions are symmetric about the origin. Cosine is an even function because the function is symmetric about the \[y\] axis. So, we take the arguments in the negative sign for odd functions and positive signs for even functions.
Here, we will use the trigonometric identities of sum of sine and cosine function and solve it further to get the form of the expression that needs to be found out. We will then simplify the equation further using trigonometric identities to get the required value. Trigonometric equation is defined as an equation involving the trigonometric ratios. Trigonometric identity is an equation which is always true.
Formula Used:
We will use the following formulas:
1) Trigonometric Identity: \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
2) Trigonometric Identity: \[\sin 2\theta = 2\sin \theta \cos \theta \]
3) Trigonometric Identity: \[\sin \theta = \sin \left( {90^\circ - x} \right)\]
4) Trigonometric Identity: \[\sin \left( {90^\circ - x} \right) = \cos x\]
5) Trigonometric Identity: \[\sin \left( {90^\circ + x} \right) = \cos x\]
6) Trigonometric Identity: \[\cos x = \sqrt {1 + \sin x} \]
Complete step by step solution:
We are given that \[\sin 27^\circ = p\].
We know that \[{\left( {\sin \theta + \cos \theta } \right)^2} = {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta \].
By substituting the trigonometric identity \[\sin 2\theta = 2\sin \theta \cos \theta \] and \[{\sin ^2}\theta + {\cos ^2}\theta = 1\], we get
\[ \Rightarrow {\left( {\sin \theta + \cos \theta } \right)^2} = 1 + \sin 2\theta \]
By substituting the values of \[\theta = 27^\circ \] , we get
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \sin \left( {2 \cdot 27} \right)^\circ \]
By multiplying the terms, we get
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \sin 54^\circ \]
By using the trigonometric identity \[\sin \left( {90^\circ - x} \right) = \cos x\], we get
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \sin \left( {90^\circ - 36^\circ } \right)\]
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \cos 36^\circ \]
We know that \[\cos 36^\circ = \dfrac{{1 + \sqrt 5 }}{4}\]
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 + \dfrac{{1 + \sqrt 5 }}{4}\]
By taking the L.C.M, we get
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = 1 \times \dfrac{4}{4} + \dfrac{{1 + \sqrt 5 }}{4}\]
\[ \Rightarrow {\left( {\sin 27^\circ + \cos 27^\circ } \right)^2} = \dfrac{{5 + \sqrt 5 }}{4}\]
Taking square root on both the sides, we get
\[ \Rightarrow \left( {\sin 27^\circ + \cos 27^\circ } \right) = \sqrt {\dfrac{{5 + \sqrt 5 }}{4}} = 1 + \cos 36^\circ \] ……………………………………………………….\[\left( 1 \right)\]
By using the trigonometric identity, we get
\[ \Rightarrow {\left( {\sin \theta - \cos \theta } \right)^2} = {\sin ^2}\theta + {\cos ^2}\theta - 2\sin \theta \cos \theta \]
By substituting the trigonometric identity, we get
\[ \Rightarrow {\left( {\sin \theta - \cos \theta } \right)^2} = 1 - \sin 2\theta \]
By substituting the values of \[\theta = 27^\circ \] , we get
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \sin 2 \cdot 27^\circ \]
By multiplying the terms, we get
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \sin 54^\circ \]
By using the trigonometric identity, we get
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \sin \left( {90^\circ - 36^\circ } \right)\]
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \cos 36^\circ \]
We know that \[\cos 36^\circ = \dfrac{{1 + \sqrt 5 }}{4}\]
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 - \dfrac{{1 + \sqrt 5 }}{4}\]
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = 1 \times \dfrac{4}{4} - \dfrac{{1 + \sqrt 5 }}{4}\]
\[ \Rightarrow {\left( {\sin 27^\circ - \cos 27^\circ } \right)^2} = \dfrac{{3 - \sqrt 5 }}{4}\]
Taking square root on both the sides, we get
\[ \Rightarrow \left( {\sin 27^\circ - \cos 27^\circ } \right) = \sqrt {\dfrac{{3 - \sqrt 5 }}{4}} = 1 - \cos 36^\circ \]………………………………………………..\[\left( 2 \right)\]
By subtracting these equations, we get
\[ \Rightarrow 1 + \cos 36^\circ - 1 + \cos 36^\circ = \sqrt {\dfrac{{5 + \sqrt 5 }}{4}} - \sqrt {\dfrac{{3 - \sqrt 5 }}{4}} \]
\[ \Rightarrow 2\cos 36^\circ = \dfrac{1}{2}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right]\]
\[ \Rightarrow \cos 36^\circ = \dfrac{1}{4}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right]\]
By using the trigonometric identity, we get
\[ \Rightarrow \sqrt {1 + \sin 36^\circ } = \dfrac{1}{4}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right]\]
Therefore, the value of \[\sqrt {1 + \sin 36^\circ } \] is \[\dfrac{1}{4}\left[ {\sqrt {5 + \sqrt 5 } - \sqrt {3 - \sqrt 5 } } \right]\].
Note:
We should know that we have many trigonometric identities which are related to all the other trigonometric equations. We should note that sine and tangent are odd functions since both the functions are symmetric about the origin. Cosine is an even function because the function is symmetric about the \[y\] axis. So, we take the arguments in the negative sign for odd functions and positive signs for even functions.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

