
If \[\sin 25^\circ \sin 35^\circ \sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\], where argument of \[\cos \] is acute and positive, then find the value of \[\left( {x + a} \right)\].
Answer
565.8k+ views
Hint:
Here, we need to find the value of the expression \[\left( {x + a} \right)\]. We will simplify the given equation using trigonometric identities, such that the left hand side can be compared to the right hand side expression \[\dfrac{{\cos x^\circ }}{a}\], to obtain the values of \[x\] and \[a\]. Finally, we will use the values of \[x\] and \[a\] to find the value of the expression \[\left( {x + a} \right)\].
Formula Used: We will use the following formulas:
1) The trigonometric identities \[\sin A\sin B = \dfrac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right]\] and \[\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]\].
2) The cosine of any angle \[\theta \] is equal to the cosine of the negative angle \[ - \theta \], that is \[\cos \theta = \cos \left( { - \theta } \right)\].
3) The sine and cosine of complementary angles is given by \[\sin \left( {90^\circ - \theta } \right) = \cos \theta \].
4) The sine of an acute angle \[\theta \] can be written as \[\sin \left( {90^\circ + \theta } \right) = \cos \theta \], because sine is positive in the second quadrant.
Complete step by step solution:
We will use trigonometric identities to simplify the left hand side of the given equation.
Using the trigonometric identity \[\sin A\sin B = \dfrac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right]\] to rewrite the expression \[\sin 25^\circ \sin 35^\circ \], we get
\[\begin{array}{l} \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos \left( {25^\circ - 35^\circ } \right) - \cos \left( {25^\circ + 35^\circ } \right)} \right]\\ \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos \left( { - 10^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\end{array}\]
Using the identity, \[\cos \theta = \cos \left( { - \theta } \right)\], we get
\[\cos \left( { - 10^\circ } \right) = \cos 10^\circ \]
Substituting \[\cos \left( { - 10^\circ } \right) = \cos 10^\circ \] in the equation \[\sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos \left( { - 10^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\], we get
\[ \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos 10^\circ - \cos 60^\circ } \right]\]
The cosine of the angle measuring \[60^\circ \] is equal to \[\dfrac{1}{2}\].
Substituting \[\cos 60^\circ = \dfrac{1}{2}\] in the equation \[\sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos 10^\circ - \cos 60^\circ } \right]\], we get
\[ \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos 10^\circ - \dfrac{1}{2}} \right]\]
Simplifying the expression using the distributive law of multiplication, we get
\[ \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\cos 10^\circ - \dfrac{1}{4}\]
Now, substituting \[\sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\cos 10^\circ - \dfrac{1}{4}\] in the equation \[\sin 25^\circ \sin 35^\circ \sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\], we get
\[\begin{array}{l} \Rightarrow \left( {\dfrac{1}{2}\cos 10^\circ - \dfrac{1}{4}} \right)\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\\ \Rightarrow \dfrac{1}{2}\cos 10^\circ \sin 85^\circ - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\end{array}\]
We know that \[\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]\].
Using the trigonometric identity \[\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]\] to rewrite the expression \[\cos 10^\circ \sin 85^\circ \], we get
\[\begin{array}{l} \Rightarrow \sin 85^\circ \cos 10^\circ = \dfrac{1}{2}\left[ {\sin \left( {85^\circ + 10^\circ } \right) + \sin \left( {85^\circ - 10^\circ } \right)} \right]\\ \Rightarrow \sin 85^\circ \cos 10^\circ = \dfrac{1}{2}\left[ {\sin 95^\circ + \sin 75^\circ } \right]\end{array}\]
Simplifying the expression, we get
\[ \Rightarrow \cos 10^\circ \sin 85^\circ = \dfrac{1}{2}\sin 95^\circ + \dfrac{1}{2}\sin 75^\circ \]
Substituting \[\cos 10^\circ \sin 85^\circ = \dfrac{1}{2}\sin 95^\circ + \dfrac{1}{2}\sin 75^\circ \] in the equation \[\dfrac{1}{2}\cos 10^\circ \sin 85^\circ - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\], we get
\[ \Rightarrow \dfrac{1}{2}\left( {\dfrac{1}{2}\sin 95^\circ + \dfrac{1}{2}\sin 75^\circ } \right) - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\]
Multiplying the terms, we get
\[ \Rightarrow \dfrac{1}{4}\sin 95^\circ + \dfrac{1}{4}\sin 75^\circ - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\]
Rewriting the expression, we get
\[ \Rightarrow \dfrac{1}{4}\sin \left( {90^\circ + 5^\circ } \right) + \dfrac{1}{4}\sin \left( {90^\circ - 15^\circ } \right) - \dfrac{1}{4}\sin \left( {90^\circ - 5^\circ } \right) = \dfrac{{\cos x^\circ }}{a}\]
Now, we know that the sine and cosine of complementary angles is given by \[\sin \left( {90^\circ - \theta } \right) = \cos \theta \].
The sine of an acute angle \[\theta \] can be written as \[\sin \left( {90^\circ + \theta } \right) = \cos \theta \], because sine is positive in the second quadrant.
Using the trigonometric identities \[\sin \left( {90^\circ - \theta } \right) = \cos \theta \] and \[\sin \left( {90^\circ + \theta } \right) = \cos \theta \] in the equation, we get
\[ \Rightarrow \dfrac{1}{4}\cos 5^\circ + \dfrac{1}{4}\cos 15^\circ - \dfrac{1}{4}\cos 5^\circ = \dfrac{{\cos x^\circ }}{a}\]
Subtracting the like terms, we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{4}\cos 15^\circ = \dfrac{{\cos x^\circ }}{a}\\ \Rightarrow \dfrac{{\cos 15^\circ }}{4} = \dfrac{{\cos x^\circ }}{a}\end{array}\]
Comparing the terms on both the sides of the equation, we get
\[x = 15\] and \[4 = a\]
Now, we can find the value of the expression \[\left( {x + a} \right)\].
Substituting \[x = 15\] and \[a = 4\] in the expression, we get
\[x + a = 15 + 4 = 19\]
Therefore, we get the value of the expression \[\left( {x + a} \right)\] as 19.
Note:
We have used the distributive law of multiplication in the solution. The distributive law of multiplication states that \[a\left( {b + c} \right) = a \cdot b + a \cdot c\].
The identity \[\sin A\sin B = \dfrac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right]\] is obtained by rewriting the trigonometric identity \[\cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin A\sin B\].
The identity \[\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]\] is obtained by rewriting the trigonometric identity \[\sin \left( {A + B} \right) + \sin \left( {A - B} \right) = 2\sin A\cos B\].
Here, we need to find the value of the expression \[\left( {x + a} \right)\]. We will simplify the given equation using trigonometric identities, such that the left hand side can be compared to the right hand side expression \[\dfrac{{\cos x^\circ }}{a}\], to obtain the values of \[x\] and \[a\]. Finally, we will use the values of \[x\] and \[a\] to find the value of the expression \[\left( {x + a} \right)\].
Formula Used: We will use the following formulas:
1) The trigonometric identities \[\sin A\sin B = \dfrac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right]\] and \[\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]\].
2) The cosine of any angle \[\theta \] is equal to the cosine of the negative angle \[ - \theta \], that is \[\cos \theta = \cos \left( { - \theta } \right)\].
3) The sine and cosine of complementary angles is given by \[\sin \left( {90^\circ - \theta } \right) = \cos \theta \].
4) The sine of an acute angle \[\theta \] can be written as \[\sin \left( {90^\circ + \theta } \right) = \cos \theta \], because sine is positive in the second quadrant.
Complete step by step solution:
We will use trigonometric identities to simplify the left hand side of the given equation.
Using the trigonometric identity \[\sin A\sin B = \dfrac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right]\] to rewrite the expression \[\sin 25^\circ \sin 35^\circ \], we get
\[\begin{array}{l} \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos \left( {25^\circ - 35^\circ } \right) - \cos \left( {25^\circ + 35^\circ } \right)} \right]\\ \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos \left( { - 10^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\end{array}\]
Using the identity, \[\cos \theta = \cos \left( { - \theta } \right)\], we get
\[\cos \left( { - 10^\circ } \right) = \cos 10^\circ \]
Substituting \[\cos \left( { - 10^\circ } \right) = \cos 10^\circ \] in the equation \[\sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos \left( { - 10^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\], we get
\[ \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos 10^\circ - \cos 60^\circ } \right]\]
The cosine of the angle measuring \[60^\circ \] is equal to \[\dfrac{1}{2}\].
Substituting \[\cos 60^\circ = \dfrac{1}{2}\] in the equation \[\sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos 10^\circ - \cos 60^\circ } \right]\], we get
\[ \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\left[ {\cos 10^\circ - \dfrac{1}{2}} \right]\]
Simplifying the expression using the distributive law of multiplication, we get
\[ \Rightarrow \sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\cos 10^\circ - \dfrac{1}{4}\]
Now, substituting \[\sin 25^\circ \sin 35^\circ = \dfrac{1}{2}\cos 10^\circ - \dfrac{1}{4}\] in the equation \[\sin 25^\circ \sin 35^\circ \sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\], we get
\[\begin{array}{l} \Rightarrow \left( {\dfrac{1}{2}\cos 10^\circ - \dfrac{1}{4}} \right)\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\\ \Rightarrow \dfrac{1}{2}\cos 10^\circ \sin 85^\circ - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\end{array}\]
We know that \[\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]\].
Using the trigonometric identity \[\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]\] to rewrite the expression \[\cos 10^\circ \sin 85^\circ \], we get
\[\begin{array}{l} \Rightarrow \sin 85^\circ \cos 10^\circ = \dfrac{1}{2}\left[ {\sin \left( {85^\circ + 10^\circ } \right) + \sin \left( {85^\circ - 10^\circ } \right)} \right]\\ \Rightarrow \sin 85^\circ \cos 10^\circ = \dfrac{1}{2}\left[ {\sin 95^\circ + \sin 75^\circ } \right]\end{array}\]
Simplifying the expression, we get
\[ \Rightarrow \cos 10^\circ \sin 85^\circ = \dfrac{1}{2}\sin 95^\circ + \dfrac{1}{2}\sin 75^\circ \]
Substituting \[\cos 10^\circ \sin 85^\circ = \dfrac{1}{2}\sin 95^\circ + \dfrac{1}{2}\sin 75^\circ \] in the equation \[\dfrac{1}{2}\cos 10^\circ \sin 85^\circ - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\], we get
\[ \Rightarrow \dfrac{1}{2}\left( {\dfrac{1}{2}\sin 95^\circ + \dfrac{1}{2}\sin 75^\circ } \right) - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\]
Multiplying the terms, we get
\[ \Rightarrow \dfrac{1}{4}\sin 95^\circ + \dfrac{1}{4}\sin 75^\circ - \dfrac{1}{4}\sin 85^\circ = \dfrac{{\cos x^\circ }}{a}\]
Rewriting the expression, we get
\[ \Rightarrow \dfrac{1}{4}\sin \left( {90^\circ + 5^\circ } \right) + \dfrac{1}{4}\sin \left( {90^\circ - 15^\circ } \right) - \dfrac{1}{4}\sin \left( {90^\circ - 5^\circ } \right) = \dfrac{{\cos x^\circ }}{a}\]
Now, we know that the sine and cosine of complementary angles is given by \[\sin \left( {90^\circ - \theta } \right) = \cos \theta \].
The sine of an acute angle \[\theta \] can be written as \[\sin \left( {90^\circ + \theta } \right) = \cos \theta \], because sine is positive in the second quadrant.
Using the trigonometric identities \[\sin \left( {90^\circ - \theta } \right) = \cos \theta \] and \[\sin \left( {90^\circ + \theta } \right) = \cos \theta \] in the equation, we get
\[ \Rightarrow \dfrac{1}{4}\cos 5^\circ + \dfrac{1}{4}\cos 15^\circ - \dfrac{1}{4}\cos 5^\circ = \dfrac{{\cos x^\circ }}{a}\]
Subtracting the like terms, we get
\[\begin{array}{l} \Rightarrow \dfrac{1}{4}\cos 15^\circ = \dfrac{{\cos x^\circ }}{a}\\ \Rightarrow \dfrac{{\cos 15^\circ }}{4} = \dfrac{{\cos x^\circ }}{a}\end{array}\]
Comparing the terms on both the sides of the equation, we get
\[x = 15\] and \[4 = a\]
Now, we can find the value of the expression \[\left( {x + a} \right)\].
Substituting \[x = 15\] and \[a = 4\] in the expression, we get
\[x + a = 15 + 4 = 19\]
Therefore, we get the value of the expression \[\left( {x + a} \right)\] as 19.
Note:
We have used the distributive law of multiplication in the solution. The distributive law of multiplication states that \[a\left( {b + c} \right) = a \cdot b + a \cdot c\].
The identity \[\sin A\sin B = \dfrac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right]\] is obtained by rewriting the trigonometric identity \[\cos \left( {A + B} \right) - \cos \left( {A - B} \right) = - 2\sin A\sin B\].
The identity \[\sin A\cos B = \dfrac{1}{2}\left[ {\sin \left( {A + B} \right) + \sin \left( {A - B} \right)} \right]\] is obtained by rewriting the trigonometric identity \[\sin \left( {A + B} \right) + \sin \left( {A - B} \right) = 2\sin A\cos B\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

