
If $ {{\sin }^{-1}}x-{{\sin }^{-1}}y=\dfrac{\pi }{2} $ , then
(a) $ {{x}^{2}}+{{y}^{2}}=1 $
(b) $ y=-\sqrt{1-{{x}^{2}}},0\le x\le 1,-1\le y\le 0 $
(c) $ y=\sqrt{1-{{x}^{2}}},\left| x \right|<1 $
(d) None of these
Answer
606.9k+ views
Hint: In the equation given in the question, add $ {{\sin }^{-1}}y $ on both the sides of the equation will reduce the equation to $ {{\sin }^{-1}}x=\dfrac{\pi }{2}+{{\sin }^{-1}}y $ . Now, take sin on both sides of the equation you will get $ x=\sin \left( \dfrac{\pi }{2}+{{\sin }^{-1}}y \right) $ . Simplifying this expression will give us $ x=\cos \left( {{\sin }^{-1}}y \right) $ then use the properties of inverse and solve the final expression in x and y.
Complete step-by-step answer:
The equation given in the question is:
$ {{\sin }^{-1}}x-{{\sin }^{-1}}y=\dfrac{\pi }{2} $
Adding $ {{\sin }^{-1}}y $ on both the sides of the above equation we get,
$ {{\sin }^{-1}}x=\dfrac{\pi }{2}+{{\sin }^{-1}}y $
Taking sin on both the sides of the above equation we get,
$ \sin \left( {{\sin }^{-1}}x \right)=\sin \left( \dfrac{\pi }{2}+{{\sin }^{-1}}y \right) $
We know that if we multiply a trigonometric function by its inverse then we get 1 so $ \sin \left( {{\sin }^{-1}}x \right)=1 $ and also the value of $ \sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta $ . Using these relations in the above equation we get,
$ x=\cos \left( {{\sin }^{-1}}y \right) $
In the above equation, let us assume that $ {{\sin }^{-1}}y=\varphi $ then taking sin on both the sides we get $ y=\sin \varphi $ and we need the value of $ \cos \varphi $ which is equal to $ \sqrt{1-{{y}^{2}}} $ because $ \cos \varphi =\sqrt{1-{{\sin }^{2}}\varphi } $ .
$ x=\cos \varphi $
Substituting the value of $ \cos \varphi =\sqrt{1-{{\sin }^{2}}\varphi } $ in the above equation we get,
$ x=\sqrt{1-{{\sin }^{2}}\varphi } $
And we have shown above that the value of $ \sin \varphi =y $ so substituting this value in the above equation.
$ x=\sqrt{1-{{y}^{2}}} $
Squaring on both the sides of the above equation we get,
$ {{x}^{2}}=1-{{y}^{2}} $
None of the option given in the question matches the above form of equation so rearranging the above expression.
$ {{x}^{2}}+{{y}^{2}}=1 $
Now, the above equation matches with the option (a).
Hence, the correct option is (a).
Note: In the above solution, we have shown that $ \sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta $ . This is the property of trigonometric angles that if we add odd multiples of $ \dfrac{\pi }{2} $ to the given angle then $ \sin $ becomes $ \cos $ and vice versa so here, $ \sin \left( \dfrac{\pi }{2}+\theta \right) $ becomes $ \cos \theta $ and the sign of this conversion is positive because we know that sine of a given angle in the first and second quadrant is positive.
Complete step-by-step answer:
The equation given in the question is:
$ {{\sin }^{-1}}x-{{\sin }^{-1}}y=\dfrac{\pi }{2} $
Adding $ {{\sin }^{-1}}y $ on both the sides of the above equation we get,
$ {{\sin }^{-1}}x=\dfrac{\pi }{2}+{{\sin }^{-1}}y $
Taking sin on both the sides of the above equation we get,
$ \sin \left( {{\sin }^{-1}}x \right)=\sin \left( \dfrac{\pi }{2}+{{\sin }^{-1}}y \right) $
We know that if we multiply a trigonometric function by its inverse then we get 1 so $ \sin \left( {{\sin }^{-1}}x \right)=1 $ and also the value of $ \sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta $ . Using these relations in the above equation we get,
$ x=\cos \left( {{\sin }^{-1}}y \right) $
In the above equation, let us assume that $ {{\sin }^{-1}}y=\varphi $ then taking sin on both the sides we get $ y=\sin \varphi $ and we need the value of $ \cos \varphi $ which is equal to $ \sqrt{1-{{y}^{2}}} $ because $ \cos \varphi =\sqrt{1-{{\sin }^{2}}\varphi } $ .
$ x=\cos \varphi $
Substituting the value of $ \cos \varphi =\sqrt{1-{{\sin }^{2}}\varphi } $ in the above equation we get,
$ x=\sqrt{1-{{\sin }^{2}}\varphi } $
And we have shown above that the value of $ \sin \varphi =y $ so substituting this value in the above equation.
$ x=\sqrt{1-{{y}^{2}}} $
Squaring on both the sides of the above equation we get,
$ {{x}^{2}}=1-{{y}^{2}} $
None of the option given in the question matches the above form of equation so rearranging the above expression.
$ {{x}^{2}}+{{y}^{2}}=1 $
Now, the above equation matches with the option (a).
Hence, the correct option is (a).
Note: In the above solution, we have shown that $ \sin \left( \dfrac{\pi }{2}+\theta \right)=\cos \theta $ . This is the property of trigonometric angles that if we add odd multiples of $ \dfrac{\pi }{2} $ to the given angle then $ \sin $ becomes $ \cos $ and vice versa so here, $ \sin \left( \dfrac{\pi }{2}+\theta \right) $ becomes $ \cos \theta $ and the sign of this conversion is positive because we know that sine of a given angle in the first and second quadrant is positive.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

