
If $\sec \theta +\tan \theta =p$, then $\tan \theta $ is equal to
$1)\text{ }2p/\left( {{p}^{2}}-1 \right)$
$2)\text{ }\left( {{p}^{2}}-1 \right)/2p$
$3)\text{ }\left( {{p}^{2}}+1 \right)/2p$
$4)\text{ }2p/\left( {{p}^{2}}+1 \right)$
Answer
512.7k+ views
Hint: In this question we have been given a trigonometric equation and based on the equation we have to find the value of $\tan \theta $. We will solve this question by using the trigonometric identity ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$ and expand it. We will also use the identity that $\sin \theta =\sqrt{\left( 1-{{\cos }^{2}}\theta \right)}$ and then use the identity $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and get the required solution.
Complete step-by-step solution:
We have the expression given to us as:
$\Rightarrow \sec \theta +\tan \theta =p\to \left( 1 \right)$
And based on this we have to find the value of $\tan \theta $.
We know the trigonometric identity that ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$.
On using the expansion formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$, we get:
$\Rightarrow \left( \sec \theta +\tan \theta \right)\left( \sec \theta -\tan \theta \right)=1$
On rearranging, we get:
$\Rightarrow \left( \sec \theta -\tan \theta \right)=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}$
From equation $\left( 1 \right)$, we get:
$\Rightarrow \left( \sec \theta -\tan \theta \right)=\dfrac{1}{p}\to \left( 2 \right)$
Now on adding $\left( 1 \right)$ and $\left( 2 \right)$, we get:
$\Rightarrow 2\sec \theta =p+\dfrac{1}{p}$
On taking the lowest common multiple in the fractions, we get:
$\Rightarrow 2\sec \theta =\dfrac{{{p}^{2}}+1}{p}$
On transferring $2$ from the left-hand side to the right-hand side, we get:
$\Rightarrow \sec \theta =\dfrac{{{p}^{2}}+1}{2p}$
Now we know that $\cos \theta =\dfrac{1}{\sec \theta }$ therefore, we can write:
$\Rightarrow \cos \theta =\dfrac{1}{\left( {{p}^{2}}+1/2p \right)}$
We get the expression as:
$\Rightarrow \cos \theta =\dfrac{2p}{{{p}^{2}}+1}$
Now we know that $\sin \theta =\sqrt{\left( 1-{{\cos }^{2}}\theta \right)}$ on substituting the value of $\theta $, we get:
$\Rightarrow \sin \theta =\sqrt{\left( 1-{{\left( \dfrac{2p}{{{p}^{2}}+1} \right)}^{2}} \right)}$
On expanding the terms, we get:
$\Rightarrow \sin \theta =\sqrt{\left( 1-\dfrac{4{{p}^{2}}}{{{\left( {{p}^{2}}+1 \right)}^{2}}} \right)}$
On taking the lowest common multiple, we get:
$\Rightarrow \sin \theta =\sqrt{\left( \dfrac{{{\left( {{p}^{2}}+1 \right)}^{2}}-4{{p}^{2}}}{{{\left( {{p}^{2}}+1 \right)}^{2}}} \right)}$
On using the expansion formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get:
$\Rightarrow \sin \theta =\sqrt{\left( \dfrac{{{p}^{4}}+2{{p}^{2}}+1-4{{p}^{2}}}{{{\left( {{p}^{2}}+1 \right)}^{2}}} \right)}$
On simplifying, we get:
$\Rightarrow \sin \theta =\sqrt{\left( \dfrac{{{p}^{4}}-2{{p}^{2}}+1}{{{\left( {{p}^{2}}+1 \right)}^{2}}} \right)}$
Now we can see that ${{p}^{4}}-2{{p}^{2}}+1$ is the expansion of ${{\left( {{p}^{2}}-1 \right)}^{2}}$ therefore, on substituting, we get:
$\Rightarrow \sin \theta =\sqrt{\left( \dfrac{{{\left( {{p}^{2}}-1 \right)}^{2}}}{{{\left( {{p}^{2}}+1 \right)}^{2}}} \right)}$
On taking the square root, we get:
$\Rightarrow \sin \theta =\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}$
Now we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, on substituting the values, we get:
$\Rightarrow \tan \theta =\dfrac{\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}}{\dfrac{2p}{{{p}^{2}}+1}}$
On simplifying, we get:
$\Rightarrow \tan \theta =\dfrac{{{p}^{2}}-1}{2p}$, which is the required value.
Therefore, the correct answer is option $\left( 2 \right)$.
Note: In these types of questions, the trigonometric identities should be remembered to solve the question. The various trigonometric identities and formulae should be remembered while doing these types of sums. The various Pythagorean identities should also be remembered while doing these types of questions.
Complete step-by-step solution:
We have the expression given to us as:
$\Rightarrow \sec \theta +\tan \theta =p\to \left( 1 \right)$
And based on this we have to find the value of $\tan \theta $.
We know the trigonometric identity that ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$.
On using the expansion formula ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$, we get:
$\Rightarrow \left( \sec \theta +\tan \theta \right)\left( \sec \theta -\tan \theta \right)=1$
On rearranging, we get:
$\Rightarrow \left( \sec \theta -\tan \theta \right)=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}$
From equation $\left( 1 \right)$, we get:
$\Rightarrow \left( \sec \theta -\tan \theta \right)=\dfrac{1}{p}\to \left( 2 \right)$
Now on adding $\left( 1 \right)$ and $\left( 2 \right)$, we get:
$\Rightarrow 2\sec \theta =p+\dfrac{1}{p}$
On taking the lowest common multiple in the fractions, we get:
$\Rightarrow 2\sec \theta =\dfrac{{{p}^{2}}+1}{p}$
On transferring $2$ from the left-hand side to the right-hand side, we get:
$\Rightarrow \sec \theta =\dfrac{{{p}^{2}}+1}{2p}$
Now we know that $\cos \theta =\dfrac{1}{\sec \theta }$ therefore, we can write:
$\Rightarrow \cos \theta =\dfrac{1}{\left( {{p}^{2}}+1/2p \right)}$
We get the expression as:
$\Rightarrow \cos \theta =\dfrac{2p}{{{p}^{2}}+1}$
Now we know that $\sin \theta =\sqrt{\left( 1-{{\cos }^{2}}\theta \right)}$ on substituting the value of $\theta $, we get:
$\Rightarrow \sin \theta =\sqrt{\left( 1-{{\left( \dfrac{2p}{{{p}^{2}}+1} \right)}^{2}} \right)}$
On expanding the terms, we get:
$\Rightarrow \sin \theta =\sqrt{\left( 1-\dfrac{4{{p}^{2}}}{{{\left( {{p}^{2}}+1 \right)}^{2}}} \right)}$
On taking the lowest common multiple, we get:
$\Rightarrow \sin \theta =\sqrt{\left( \dfrac{{{\left( {{p}^{2}}+1 \right)}^{2}}-4{{p}^{2}}}{{{\left( {{p}^{2}}+1 \right)}^{2}}} \right)}$
On using the expansion formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$, we get:
$\Rightarrow \sin \theta =\sqrt{\left( \dfrac{{{p}^{4}}+2{{p}^{2}}+1-4{{p}^{2}}}{{{\left( {{p}^{2}}+1 \right)}^{2}}} \right)}$
On simplifying, we get:
$\Rightarrow \sin \theta =\sqrt{\left( \dfrac{{{p}^{4}}-2{{p}^{2}}+1}{{{\left( {{p}^{2}}+1 \right)}^{2}}} \right)}$
Now we can see that ${{p}^{4}}-2{{p}^{2}}+1$ is the expansion of ${{\left( {{p}^{2}}-1 \right)}^{2}}$ therefore, on substituting, we get:
$\Rightarrow \sin \theta =\sqrt{\left( \dfrac{{{\left( {{p}^{2}}-1 \right)}^{2}}}{{{\left( {{p}^{2}}+1 \right)}^{2}}} \right)}$
On taking the square root, we get:
$\Rightarrow \sin \theta =\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}$
Now we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, on substituting the values, we get:
$\Rightarrow \tan \theta =\dfrac{\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}}{\dfrac{2p}{{{p}^{2}}+1}}$
On simplifying, we get:
$\Rightarrow \tan \theta =\dfrac{{{p}^{2}}-1}{2p}$, which is the required value.
Therefore, the correct answer is option $\left( 2 \right)$.
Note: In these types of questions, the trigonometric identities should be remembered to solve the question. The various trigonometric identities and formulae should be remembered while doing these types of sums. The various Pythagorean identities should also be remembered while doing these types of questions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

