
If $ \sec \theta + \tan \theta = \dfrac{1}{5} $ , then the value of $ \sin \theta $ is:
$
(1)\,\,\,\dfrac{{12}}{{13}} \\
(2)\,\, - \dfrac{{12}}{{13}} \\
(3)\,\, \pm \dfrac{{12}}{{13}} \\
(4)\,\,\dfrac{5}{{12}} \\
$
Answer
484.5k+ views
Hint: To find required value we use trigonometry identity and then expanding it using algebraic identity and then simplifying it by substituting given value to form another equation which on solving with given equation gives out value of $ \tan \theta \,\,and\,\,\sec \theta $ and then using these we can find value of required $ \sin \theta $ .
Formulas used: $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Complete step-by-step answer:
To find the required value of $ \sin \theta $ . We consider trigonometric identity:
$ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Simplifying left hand side using algebraic identity. We have,
$ \left( {\sec \theta + \tan \theta } \right)\left( {\sec \theta - \tan \theta } \right) = 1 $
But it is given $ \sec \theta + \tan \theta = \dfrac{1}{5} $ ……….(i)
Substituting value in above equation. We have
$
\dfrac{1}{5}\left( {\sec \theta - \tan \theta } \right) = 1 \\
\Rightarrow \sec \theta - \tan \theta = 5.....................(ii) \;
$
Adding equation (i) and (ii) formed above
$
2\sec \theta = \dfrac{1}{5} + 5 \\
\Rightarrow 2\sec \theta = \dfrac{{1 + 25}}{5} \\
\Rightarrow 2\sec \theta = \dfrac{{26}}{5} \\
\Rightarrow \sec \theta = \dfrac{{26}}{5} \times \dfrac{1}{2} \\
\Rightarrow \sec \theta = \dfrac{{13}}{5} \;
$
Substituting $ \sec \theta = \dfrac{{13}}{5} $ in equation (i). We have
$
\dfrac{{13}}{5} + \tan \theta = \dfrac{1}{5} \\
\Rightarrow \tan \theta = \dfrac{1}{5} - \dfrac{{13}}{5} \\
\Rightarrow \tan \theta = \dfrac{{1 - 13}}{5} \\
\Rightarrow \tan \theta = - \dfrac{{12}}{5} \;
$
Now, dividing value $ \tan \theta \,\,with\,\,value\,\,of\,\,\sec \theta \,\,calculated\,\,in\,\,above. $
$
\Rightarrow \dfrac{{\tan \theta }}{{\sec \theta }} = \dfrac{{ - \dfrac{{12}}{5}}}{{\dfrac{{13}}{5}}} \\
\Rightarrow \dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{1}{{\cos \theta }}}} = - \dfrac{{12}}{5} \times \dfrac{5}{{13}} \\
\Rightarrow \sin \theta = - \dfrac{{12}}{{13}} \;
$
Therefore, from above we see that the value of $ \sin \theta \,\,is\,\, - \dfrac{{12}}{{13}} $ .
So, the correct answer is “ $ \dfrac{{-12}}{{13}} $ ”.
Note: We can also find the required value from a given function in another way. In this we first convert given trigonometric function in term of $ \sin \theta \,\,and\,\cos \theta $ and then squaring both side and converting in term of $ \sin \theta $ to form quadratic equation and then solving quadratic so formed to get value of $ \sin \theta $ and hence required solution of given problem.
Formulas used: $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Complete step-by-step answer:
To find the required value of $ \sin \theta $ . We consider trigonometric identity:
$ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Simplifying left hand side using algebraic identity. We have,
$ \left( {\sec \theta + \tan \theta } \right)\left( {\sec \theta - \tan \theta } \right) = 1 $
But it is given $ \sec \theta + \tan \theta = \dfrac{1}{5} $ ……….(i)
Substituting value in above equation. We have
$
\dfrac{1}{5}\left( {\sec \theta - \tan \theta } \right) = 1 \\
\Rightarrow \sec \theta - \tan \theta = 5.....................(ii) \;
$
Adding equation (i) and (ii) formed above
$
2\sec \theta = \dfrac{1}{5} + 5 \\
\Rightarrow 2\sec \theta = \dfrac{{1 + 25}}{5} \\
\Rightarrow 2\sec \theta = \dfrac{{26}}{5} \\
\Rightarrow \sec \theta = \dfrac{{26}}{5} \times \dfrac{1}{2} \\
\Rightarrow \sec \theta = \dfrac{{13}}{5} \;
$
Substituting $ \sec \theta = \dfrac{{13}}{5} $ in equation (i). We have
$
\dfrac{{13}}{5} + \tan \theta = \dfrac{1}{5} \\
\Rightarrow \tan \theta = \dfrac{1}{5} - \dfrac{{13}}{5} \\
\Rightarrow \tan \theta = \dfrac{{1 - 13}}{5} \\
\Rightarrow \tan \theta = - \dfrac{{12}}{5} \;
$
Now, dividing value $ \tan \theta \,\,with\,\,value\,\,of\,\,\sec \theta \,\,calculated\,\,in\,\,above. $
$
\Rightarrow \dfrac{{\tan \theta }}{{\sec \theta }} = \dfrac{{ - \dfrac{{12}}{5}}}{{\dfrac{{13}}{5}}} \\
\Rightarrow \dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{1}{{\cos \theta }}}} = - \dfrac{{12}}{5} \times \dfrac{5}{{13}} \\
\Rightarrow \sin \theta = - \dfrac{{12}}{{13}} \;
$
Therefore, from above we see that the value of $ \sin \theta \,\,is\,\, - \dfrac{{12}}{{13}} $ .
So, the correct answer is “ $ \dfrac{{-12}}{{13}} $ ”.
Note: We can also find the required value from a given function in another way. In this we first convert given trigonometric function in term of $ \sin \theta \,\,and\,\cos \theta $ and then squaring both side and converting in term of $ \sin \theta $ to form quadratic equation and then solving quadratic so formed to get value of $ \sin \theta $ and hence required solution of given problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What is the difference between superposition and e class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
