
If $ \sec \theta + \tan \theta = \dfrac{1}{5} $ , then the value of $ \sin \theta $ is:
$
(1)\,\,\,\dfrac{{12}}{{13}} \\
(2)\,\, - \dfrac{{12}}{{13}} \\
(3)\,\, \pm \dfrac{{12}}{{13}} \\
(4)\,\,\dfrac{5}{{12}} \\
$
Answer
558.6k+ views
Hint: To find required value we use trigonometry identity and then expanding it using algebraic identity and then simplifying it by substituting given value to form another equation which on solving with given equation gives out value of $ \tan \theta \,\,and\,\,\sec \theta $ and then using these we can find value of required $ \sin \theta $ .
Formulas used: $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Complete step-by-step answer:
To find the required value of $ \sin \theta $ . We consider trigonometric identity:
$ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Simplifying left hand side using algebraic identity. We have,
$ \left( {\sec \theta + \tan \theta } \right)\left( {\sec \theta - \tan \theta } \right) = 1 $
But it is given $ \sec \theta + \tan \theta = \dfrac{1}{5} $ ……….(i)
Substituting value in above equation. We have
$
\dfrac{1}{5}\left( {\sec \theta - \tan \theta } \right) = 1 \\
\Rightarrow \sec \theta - \tan \theta = 5.....................(ii) \;
$
Adding equation (i) and (ii) formed above
$
2\sec \theta = \dfrac{1}{5} + 5 \\
\Rightarrow 2\sec \theta = \dfrac{{1 + 25}}{5} \\
\Rightarrow 2\sec \theta = \dfrac{{26}}{5} \\
\Rightarrow \sec \theta = \dfrac{{26}}{5} \times \dfrac{1}{2} \\
\Rightarrow \sec \theta = \dfrac{{13}}{5} \;
$
Substituting $ \sec \theta = \dfrac{{13}}{5} $ in equation (i). We have
$
\dfrac{{13}}{5} + \tan \theta = \dfrac{1}{5} \\
\Rightarrow \tan \theta = \dfrac{1}{5} - \dfrac{{13}}{5} \\
\Rightarrow \tan \theta = \dfrac{{1 - 13}}{5} \\
\Rightarrow \tan \theta = - \dfrac{{12}}{5} \;
$
Now, dividing value $ \tan \theta \,\,with\,\,value\,\,of\,\,\sec \theta \,\,calculated\,\,in\,\,above. $
$
\Rightarrow \dfrac{{\tan \theta }}{{\sec \theta }} = \dfrac{{ - \dfrac{{12}}{5}}}{{\dfrac{{13}}{5}}} \\
\Rightarrow \dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{1}{{\cos \theta }}}} = - \dfrac{{12}}{5} \times \dfrac{5}{{13}} \\
\Rightarrow \sin \theta = - \dfrac{{12}}{{13}} \;
$
Therefore, from above we see that the value of $ \sin \theta \,\,is\,\, - \dfrac{{12}}{{13}} $ .
So, the correct answer is “ $ \dfrac{{-12}}{{13}} $ ”.
Note: We can also find the required value from a given function in another way. In this we first convert given trigonometric function in term of $ \sin \theta \,\,and\,\cos \theta $ and then squaring both side and converting in term of $ \sin \theta $ to form quadratic equation and then solving quadratic so formed to get value of $ \sin \theta $ and hence required solution of given problem.
Formulas used: $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Complete step-by-step answer:
To find the required value of $ \sin \theta $ . We consider trigonometric identity:
$ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Simplifying left hand side using algebraic identity. We have,
$ \left( {\sec \theta + \tan \theta } \right)\left( {\sec \theta - \tan \theta } \right) = 1 $
But it is given $ \sec \theta + \tan \theta = \dfrac{1}{5} $ ……….(i)
Substituting value in above equation. We have
$
\dfrac{1}{5}\left( {\sec \theta - \tan \theta } \right) = 1 \\
\Rightarrow \sec \theta - \tan \theta = 5.....................(ii) \;
$
Adding equation (i) and (ii) formed above
$
2\sec \theta = \dfrac{1}{5} + 5 \\
\Rightarrow 2\sec \theta = \dfrac{{1 + 25}}{5} \\
\Rightarrow 2\sec \theta = \dfrac{{26}}{5} \\
\Rightarrow \sec \theta = \dfrac{{26}}{5} \times \dfrac{1}{2} \\
\Rightarrow \sec \theta = \dfrac{{13}}{5} \;
$
Substituting $ \sec \theta = \dfrac{{13}}{5} $ in equation (i). We have
$
\dfrac{{13}}{5} + \tan \theta = \dfrac{1}{5} \\
\Rightarrow \tan \theta = \dfrac{1}{5} - \dfrac{{13}}{5} \\
\Rightarrow \tan \theta = \dfrac{{1 - 13}}{5} \\
\Rightarrow \tan \theta = - \dfrac{{12}}{5} \;
$
Now, dividing value $ \tan \theta \,\,with\,\,value\,\,of\,\,\sec \theta \,\,calculated\,\,in\,\,above. $
$
\Rightarrow \dfrac{{\tan \theta }}{{\sec \theta }} = \dfrac{{ - \dfrac{{12}}{5}}}{{\dfrac{{13}}{5}}} \\
\Rightarrow \dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{1}{{\cos \theta }}}} = - \dfrac{{12}}{5} \times \dfrac{5}{{13}} \\
\Rightarrow \sin \theta = - \dfrac{{12}}{{13}} \;
$
Therefore, from above we see that the value of $ \sin \theta \,\,is\,\, - \dfrac{{12}}{{13}} $ .
So, the correct answer is “ $ \dfrac{{-12}}{{13}} $ ”.
Note: We can also find the required value from a given function in another way. In this we first convert given trigonometric function in term of $ \sin \theta \,\,and\,\cos \theta $ and then squaring both side and converting in term of $ \sin \theta $ to form quadratic equation and then solving quadratic so formed to get value of $ \sin \theta $ and hence required solution of given problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

