
If $ \sec \theta + \tan \theta = \dfrac{1}{5} $ , then the value of $ \sin \theta $ is:
$
(1)\,\,\,\dfrac{{12}}{{13}} \\
(2)\,\, - \dfrac{{12}}{{13}} \\
(3)\,\, \pm \dfrac{{12}}{{13}} \\
(4)\,\,\dfrac{5}{{12}} \\
$
Answer
573k+ views
Hint: To find required value we use trigonometry identity and then expanding it using algebraic identity and then simplifying it by substituting given value to form another equation which on solving with given equation gives out value of $ \tan \theta \,\,and\,\,\sec \theta $ and then using these we can find value of required $ \sin \theta $ .
Formulas used: $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Complete step-by-step answer:
To find the required value of $ \sin \theta $ . We consider trigonometric identity:
$ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Simplifying left hand side using algebraic identity. We have,
$ \left( {\sec \theta + \tan \theta } \right)\left( {\sec \theta - \tan \theta } \right) = 1 $
But it is given $ \sec \theta + \tan \theta = \dfrac{1}{5} $ ……….(i)
Substituting value in above equation. We have
$
\dfrac{1}{5}\left( {\sec \theta - \tan \theta } \right) = 1 \\
\Rightarrow \sec \theta - \tan \theta = 5.....................(ii) \;
$
Adding equation (i) and (ii) formed above
$
2\sec \theta = \dfrac{1}{5} + 5 \\
\Rightarrow 2\sec \theta = \dfrac{{1 + 25}}{5} \\
\Rightarrow 2\sec \theta = \dfrac{{26}}{5} \\
\Rightarrow \sec \theta = \dfrac{{26}}{5} \times \dfrac{1}{2} \\
\Rightarrow \sec \theta = \dfrac{{13}}{5} \;
$
Substituting $ \sec \theta = \dfrac{{13}}{5} $ in equation (i). We have
$
\dfrac{{13}}{5} + \tan \theta = \dfrac{1}{5} \\
\Rightarrow \tan \theta = \dfrac{1}{5} - \dfrac{{13}}{5} \\
\Rightarrow \tan \theta = \dfrac{{1 - 13}}{5} \\
\Rightarrow \tan \theta = - \dfrac{{12}}{5} \;
$
Now, dividing value $ \tan \theta \,\,with\,\,value\,\,of\,\,\sec \theta \,\,calculated\,\,in\,\,above. $
$
\Rightarrow \dfrac{{\tan \theta }}{{\sec \theta }} = \dfrac{{ - \dfrac{{12}}{5}}}{{\dfrac{{13}}{5}}} \\
\Rightarrow \dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{1}{{\cos \theta }}}} = - \dfrac{{12}}{5} \times \dfrac{5}{{13}} \\
\Rightarrow \sin \theta = - \dfrac{{12}}{{13}} \;
$
Therefore, from above we see that the value of $ \sin \theta \,\,is\,\, - \dfrac{{12}}{{13}} $ .
So, the correct answer is “ $ \dfrac{{-12}}{{13}} $ ”.
Note: We can also find the required value from a given function in another way. In this we first convert given trigonometric function in term of $ \sin \theta \,\,and\,\cos \theta $ and then squaring both side and converting in term of $ \sin \theta $ to form quadratic equation and then solving quadratic so formed to get value of $ \sin \theta $ and hence required solution of given problem.
Formulas used: $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Complete step-by-step answer:
To find the required value of $ \sin \theta $ . We consider trigonometric identity:
$ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
Simplifying left hand side using algebraic identity. We have,
$ \left( {\sec \theta + \tan \theta } \right)\left( {\sec \theta - \tan \theta } \right) = 1 $
But it is given $ \sec \theta + \tan \theta = \dfrac{1}{5} $ ……….(i)
Substituting value in above equation. We have
$
\dfrac{1}{5}\left( {\sec \theta - \tan \theta } \right) = 1 \\
\Rightarrow \sec \theta - \tan \theta = 5.....................(ii) \;
$
Adding equation (i) and (ii) formed above
$
2\sec \theta = \dfrac{1}{5} + 5 \\
\Rightarrow 2\sec \theta = \dfrac{{1 + 25}}{5} \\
\Rightarrow 2\sec \theta = \dfrac{{26}}{5} \\
\Rightarrow \sec \theta = \dfrac{{26}}{5} \times \dfrac{1}{2} \\
\Rightarrow \sec \theta = \dfrac{{13}}{5} \;
$
Substituting $ \sec \theta = \dfrac{{13}}{5} $ in equation (i). We have
$
\dfrac{{13}}{5} + \tan \theta = \dfrac{1}{5} \\
\Rightarrow \tan \theta = \dfrac{1}{5} - \dfrac{{13}}{5} \\
\Rightarrow \tan \theta = \dfrac{{1 - 13}}{5} \\
\Rightarrow \tan \theta = - \dfrac{{12}}{5} \;
$
Now, dividing value $ \tan \theta \,\,with\,\,value\,\,of\,\,\sec \theta \,\,calculated\,\,in\,\,above. $
$
\Rightarrow \dfrac{{\tan \theta }}{{\sec \theta }} = \dfrac{{ - \dfrac{{12}}{5}}}{{\dfrac{{13}}{5}}} \\
\Rightarrow \dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{1}{{\cos \theta }}}} = - \dfrac{{12}}{5} \times \dfrac{5}{{13}} \\
\Rightarrow \sin \theta = - \dfrac{{12}}{{13}} \;
$
Therefore, from above we see that the value of $ \sin \theta \,\,is\,\, - \dfrac{{12}}{{13}} $ .
So, the correct answer is “ $ \dfrac{{-12}}{{13}} $ ”.
Note: We can also find the required value from a given function in another way. In this we first convert given trigonometric function in term of $ \sin \theta \,\,and\,\cos \theta $ and then squaring both side and converting in term of $ \sin \theta $ to form quadratic equation and then solving quadratic so formed to get value of $ \sin \theta $ and hence required solution of given problem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

