
If \[\sec A=\dfrac{17}{8}\], verify that
\[\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}\]
Answer
608.4k+ views
Hint:First of all, consider a triangle ABC, right-angled at B. Now use \[\sec A=\dfrac{Hypotenuse}{Base}=\dfrac{17}{8}\] and let hypotenuse and base be 17x and 8x respectively. Now, find the remaining side by using the Pythagoras theorem. Now find, \[\sin A=\dfrac{P}{H},\cos A=\dfrac{B}{H}\] and \[\tan A=\dfrac{P}{B}\] and substitute in the given equation to prove that LHS = RHS.
Complete step-by-step answer:
Here, we are given that \[\sec A=\dfrac{17}{8}\]. We have to verify that \[\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}\].
We are given that,
\[\sec A=\dfrac{17}{8}....\left( i \right)\]
We know that,
\[\sec A=\dfrac{Hypotenuse}{Base}....\left( ii \right)\]
From equation (i) and (ii), we get,
\[\dfrac{17}{8}=\dfrac{Hypotenuse}{Base}\]
Let us consider a triangle ABC, right-angled at B.
Let base AB be equal to 8x and hypotenuse be equal to 17x.
We know that Pythagoras theorem states that in a right-angled triangle, the square of the hypotenuse side is equal to the sum of the squares of the other two sides. So, in the above triangle ABC, by applying Pythagoras theorem, we get,
\[{{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}={{\left( AC \right)}^{2}}\]
Now by substituting the value of AB = 8x and AC = 17x, we get,
\[{{\left( 8x \right)}^{2}}+{{\left( BC \right)}^{2}}={{\left( 17x \right)}^{2}}\]
\[64{{x}^{2}}+{{\left( BC \right)}^{2}}=289{{x}^{2}}\]
\[B{{C}^{2}}=289{{x}^{2}}-64{{x}^{2}}\]
\[B{{C}^{2}}=225{{x}^{2}}\]
\[BC=15x\]
Now, we know that,
\[\sin A=\dfrac{Perpendicular}{Hypotenuse}\]
\[\cos A=\dfrac{Base}{Hypotenuse}\]
\[\tan A=\dfrac{Perpendicular}{Base}\]
We can see that with respect to angle A,
Perpendicular = BC = 15x
Base = AB = 8x
Hypotenuse = AC = 17x
So, we get,
\[\sin A=\dfrac{BC}{AC}=\dfrac{15x}{17x}=\dfrac{15}{17}\]
\[\cos A=\dfrac{AB}{AC}=\dfrac{8x}{17x}=\dfrac{8}{17}\]
\[\tan A=\dfrac{BC}{AB}=\dfrac{15x}{8x}=\dfrac{15}{8}\]
Now, let us consider the equation given in the question,
\[\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}\]
By substituting the value of sin A, cos A and tan A, we get,
\[\dfrac{3-4{{\left( \dfrac{15}{17} \right)}^{2}}}{4{{\left( \dfrac{8}{17} \right)}^{2}}-3}=\dfrac{3-{{\left( \dfrac{15}{8} \right)}^{2}}}{1-3{{\left( \dfrac{15}{8} \right)}^{2}}}\]
\[\dfrac{3-4\left( \dfrac{225}{289} \right)}{4\left( \dfrac{64}{289} \right)-3}=\dfrac{3-\dfrac{225}{64}}{1-3\left( \dfrac{225}{64} \right)}\]
\[\dfrac{3\left( 289 \right)-4\left( 225 \right)}{4\left( 64 \right)-3\left( 289 \right)}=\dfrac{\left( 64 \right)\left( 3 \right)-\left( 225 \right)}{64-3\left( 225 \right)}\]
\[\dfrac{367-900}{256-867}=\dfrac{192-225}{64-675}\]
\[\dfrac{-33}{-611}=\dfrac{-33}{-611}\]
\[\dfrac{33}{611}=\dfrac{33}{611}\]
Hence, LHS = RHS
Therefore, we have verified that
\[\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}\]
Note: In these types of questions, students must remember to take all trigonometric ratios positive because when nothing is specified about the angle, we consider it to be acute or in the first quadrant. Also, students can find cos A by using \[\cos A=\dfrac{1}{\sec A}\], tan A by using \[{{\tan }^{2}}A={{\sec }^{2}}A-1\] and sin A by using \[\dfrac{\sin A}{\cos A}=\tan A\] and then substitute these values in the given equation to verify it.
Complete step-by-step answer:
Here, we are given that \[\sec A=\dfrac{17}{8}\]. We have to verify that \[\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}\].
We are given that,
\[\sec A=\dfrac{17}{8}....\left( i \right)\]
We know that,
\[\sec A=\dfrac{Hypotenuse}{Base}....\left( ii \right)\]
From equation (i) and (ii), we get,
\[\dfrac{17}{8}=\dfrac{Hypotenuse}{Base}\]
Let us consider a triangle ABC, right-angled at B.
Let base AB be equal to 8x and hypotenuse be equal to 17x.
We know that Pythagoras theorem states that in a right-angled triangle, the square of the hypotenuse side is equal to the sum of the squares of the other two sides. So, in the above triangle ABC, by applying Pythagoras theorem, we get,
\[{{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}={{\left( AC \right)}^{2}}\]
Now by substituting the value of AB = 8x and AC = 17x, we get,
\[{{\left( 8x \right)}^{2}}+{{\left( BC \right)}^{2}}={{\left( 17x \right)}^{2}}\]
\[64{{x}^{2}}+{{\left( BC \right)}^{2}}=289{{x}^{2}}\]
\[B{{C}^{2}}=289{{x}^{2}}-64{{x}^{2}}\]
\[B{{C}^{2}}=225{{x}^{2}}\]
\[BC=15x\]
Now, we know that,
\[\sin A=\dfrac{Perpendicular}{Hypotenuse}\]
\[\cos A=\dfrac{Base}{Hypotenuse}\]
\[\tan A=\dfrac{Perpendicular}{Base}\]
We can see that with respect to angle A,
Perpendicular = BC = 15x
Base = AB = 8x
Hypotenuse = AC = 17x
So, we get,
\[\sin A=\dfrac{BC}{AC}=\dfrac{15x}{17x}=\dfrac{15}{17}\]
\[\cos A=\dfrac{AB}{AC}=\dfrac{8x}{17x}=\dfrac{8}{17}\]
\[\tan A=\dfrac{BC}{AB}=\dfrac{15x}{8x}=\dfrac{15}{8}\]
Now, let us consider the equation given in the question,
\[\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}\]
By substituting the value of sin A, cos A and tan A, we get,
\[\dfrac{3-4{{\left( \dfrac{15}{17} \right)}^{2}}}{4{{\left( \dfrac{8}{17} \right)}^{2}}-3}=\dfrac{3-{{\left( \dfrac{15}{8} \right)}^{2}}}{1-3{{\left( \dfrac{15}{8} \right)}^{2}}}\]
\[\dfrac{3-4\left( \dfrac{225}{289} \right)}{4\left( \dfrac{64}{289} \right)-3}=\dfrac{3-\dfrac{225}{64}}{1-3\left( \dfrac{225}{64} \right)}\]
\[\dfrac{3\left( 289 \right)-4\left( 225 \right)}{4\left( 64 \right)-3\left( 289 \right)}=\dfrac{\left( 64 \right)\left( 3 \right)-\left( 225 \right)}{64-3\left( 225 \right)}\]
\[\dfrac{367-900}{256-867}=\dfrac{192-225}{64-675}\]
\[\dfrac{-33}{-611}=\dfrac{-33}{-611}\]
\[\dfrac{33}{611}=\dfrac{33}{611}\]
Hence, LHS = RHS
Therefore, we have verified that
\[\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}\]
Note: In these types of questions, students must remember to take all trigonometric ratios positive because when nothing is specified about the angle, we consider it to be acute or in the first quadrant. Also, students can find cos A by using \[\cos A=\dfrac{1}{\sec A}\], tan A by using \[{{\tan }^{2}}A={{\sec }^{2}}A-1\] and sin A by using \[\dfrac{\sin A}{\cos A}=\tan A\] and then substitute these values in the given equation to verify it.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

