
If \[{{S}_{1}}=\sum{n},{{S}_{2}}=\sum{{{n}^{2}}},{{S}_{3}}=\sum{{{n}^{3}}}\] , then the value of \[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{S}_{1}}\left( 1+\dfrac{{{S}_{3}}}{8} \right)}{S_{2}^{2}}\] is equal to
A.\[\dfrac{3}{32}\]
B.\[\dfrac{3}{64}\]
C.\[\dfrac{9}{32}\]
D.\[\dfrac{9}{64}\]
Answer
614.1k+ views
Hint: To solve the question, we have to apply the formula of \[\sum{n},\sum{{{n}^{2}}},\sum{{{n}^{3}}}\] to convert the given expression into expression in terms of n. To solve the expression, apply the formula of algebraic expression for simplification which will ease the procedure of solving. We have to analyse that the given expression should be simplified to an expression in terms of \[\dfrac{1}{n}\]. Thus, we can apply the formula of limits to calculate the value of the given expression.
Complete step by step answer:
The given expression is \[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{S}_{1}}\left( 1+\dfrac{{{S}_{3}}}{8} \right)}{S_{2}^{2}}\]
By substituting the values \[{{S}_{1}}=\sum{n},{{S}_{2}}=\sum{{{n}^{2}}},{{S}_{3}}=\sum{{{n}^{3}}}\] in the above expression, we get
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\sum{n}\left( 1+\dfrac{\sum{{{n}^{3}}}}{8} \right)}{{{\left( \sum{{{n}^{2}}} \right)}^{2}}}\]
We know the formula \[\sum{n}=\dfrac{n(n-1)}{2},\sum{{{n}^{2}}=\dfrac{n(n-1)(2n-1)}{6}},\sum{{{n}^{3}}}=\dfrac{{{n}^{2}}{{(n-1)}^{2}}}{4}\]
By substituting the formula in the above expression, we get
\[\begin{align}
& \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\dfrac{n(n-1)}{2}\left( 1+\dfrac{\left( \dfrac{{{n}^{2}}{{(n-1)}^{2}}}{4} \right)}{8} \right)}{{{\left( \dfrac{n(n-1)(2n-1)}{6} \right)}^{2}}} \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\dfrac{n(n-1)}{2}\left( 1+\dfrac{{{n}^{2}}{{(n-1)}^{2}}}{4\times 8} \right)}{{{\left( \dfrac{n(n-1)(2n-1)}{6} \right)}^{2}}} \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{n(n-1)}{2} \right)\left( 1+\dfrac{{{n}^{2}}{{(n-1)}^{2}}}{4\times 8} \right){{\left( \dfrac{6}{n(n-1)(2n-1)} \right)}^{2}} \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{n(n-1)}{2} \right)\left( 1+\dfrac{{{n}^{2}}{{(n-1)}^{2}}}{32} \right)\left( \dfrac{{{6}^{2}}}{{{\left( n(n-1)(2n-1) \right)}^{2}}} \right) \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{n(n-1)}{2} \right)\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{32} \right)\left( \dfrac{36}{{{\left( n(n-1)(2n-1) \right)}^{2}}} \right) \\
\end{align}\]
By cancelling the common terms, we get
\[\begin{align}
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( n(n-1) \right)\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{16} \right)\left( \dfrac{9}{{{\left( n(n-1)(2n-1) \right)}^{2}}} \right) \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( n(n-1) \right)\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{16} \right)\left( \dfrac{9}{{{\left( n(n-1) \right)}^{2}}{{(2n-1)}^{2}}} \right) \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{16} \right)\left( \dfrac{9}{n(n-1){{(2n-1)}^{2}}} \right) \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{9}{16} \right)\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{n(n-1){{(2n-1)}^{2}}} \right) \\
& =\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{n(n-1){{(2n-1)}^{2}}} \right) \\
\end{align}\]
By taking n term common from both denominator and numerator, we get
\[=\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{32+{{n}^{2}}\times {{n}^{2}}{{\left( 1-\dfrac{1}{n} \right)}^{2}}}{n\times n\left( 1-\dfrac{1}{n} \right)\times {{n}^{2}}{{\left( 2-\dfrac{1}{n} \right)}^{2}}} \right)\]
We know the formula \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]. Thus, by applying this formula, we get
\[\begin{align}
& =\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{32+{{n}^{2+2}}{{\left( 1-\dfrac{1}{n} \right)}^{2}}}{{{n}^{1+1+2}}\left( 1-\dfrac{1}{n} \right){{\left( 2-\dfrac{1}{n} \right)}^{2}}} \right) \\
& =\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{32+{{n}^{4}}{{\left( 1-\dfrac{1}{n} \right)}^{2}}}{{{n}^{4}}\left( 1-\dfrac{1}{n} \right){{\left( 2-\dfrac{1}{n} \right)}^{2}}} \right) \\
& =\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{{{n}^{4}}\left( \dfrac{32}{{{n}^{4}}}+{{\left( 1-\dfrac{1}{n} \right)}^{2}} \right)}{{{n}^{4}}\left( 1-\dfrac{1}{n} \right){{\left( 2-\dfrac{1}{n} \right)}^{2}}} \right) \\
& =\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{\left( \dfrac{32}{{{n}^{4}}}+{{\left( 1-\dfrac{1}{n} \right)}^{2}} \right)}{\left( 1-\dfrac{1}{n} \right){{\left( 2-\dfrac{1}{n} \right)}^{2}}} \right) \\
\end{align}\]
We know that if \[n\to \infty \] then \[\dfrac{1}{n}\to 0\]. Thus, by substituting the limit values in the above expression, we get
\[\begin{align}
& =\dfrac{9}{16}\left( \dfrac{\left( 32(0)+{{\left( 1-0 \right)}^{2}} \right)}{\left( 1-0 \right){{\left( 2-0 \right)}^{2}}} \right) \\
& =\dfrac{9}{16}\left( \dfrac{\left( 0+{{\left( 1 \right)}^{2}} \right)}{\left( 1 \right){{\left( 2 \right)}^{2}}} \right) \\
& =\dfrac{9}{16}\left( \dfrac{\left( 0+1 \right)}{\left( 1 \right)\left( 4 \right)} \right) \\
& =\dfrac{9}{16}\left( \dfrac{1}{4} \right) \\
& =\dfrac{9}{64} \\
\end{align}\]
Thus, the value of \[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{S}_{1}}\left( 1+\dfrac{{{S}_{3}}}{8} \right)}{S_{2}^{2}}\] is equal to \[\dfrac{9}{64}\]
Hence, option (d) is the right choice.
Note:The possibility of mistake can be, not applying the formula of \[\sum{n},\sum{{{n}^{2}}},\sum{{{n}^{3}}}\] which is important step to convert the given expression into expression in terms of n. The other possibility of mistake can be not applying the formula of algebraic expression in simplifying the given expression. The other possibility of mistake can be the calculation mistake since the procedure of solving involves multiple steps of solving.
Complete step by step answer:
The given expression is \[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{S}_{1}}\left( 1+\dfrac{{{S}_{3}}}{8} \right)}{S_{2}^{2}}\]
By substituting the values \[{{S}_{1}}=\sum{n},{{S}_{2}}=\sum{{{n}^{2}}},{{S}_{3}}=\sum{{{n}^{3}}}\] in the above expression, we get
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\sum{n}\left( 1+\dfrac{\sum{{{n}^{3}}}}{8} \right)}{{{\left( \sum{{{n}^{2}}} \right)}^{2}}}\]
We know the formula \[\sum{n}=\dfrac{n(n-1)}{2},\sum{{{n}^{2}}=\dfrac{n(n-1)(2n-1)}{6}},\sum{{{n}^{3}}}=\dfrac{{{n}^{2}}{{(n-1)}^{2}}}{4}\]
By substituting the formula in the above expression, we get
\[\begin{align}
& \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\dfrac{n(n-1)}{2}\left( 1+\dfrac{\left( \dfrac{{{n}^{2}}{{(n-1)}^{2}}}{4} \right)}{8} \right)}{{{\left( \dfrac{n(n-1)(2n-1)}{6} \right)}^{2}}} \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{\dfrac{n(n-1)}{2}\left( 1+\dfrac{{{n}^{2}}{{(n-1)}^{2}}}{4\times 8} \right)}{{{\left( \dfrac{n(n-1)(2n-1)}{6} \right)}^{2}}} \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{n(n-1)}{2} \right)\left( 1+\dfrac{{{n}^{2}}{{(n-1)}^{2}}}{4\times 8} \right){{\left( \dfrac{6}{n(n-1)(2n-1)} \right)}^{2}} \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{n(n-1)}{2} \right)\left( 1+\dfrac{{{n}^{2}}{{(n-1)}^{2}}}{32} \right)\left( \dfrac{{{6}^{2}}}{{{\left( n(n-1)(2n-1) \right)}^{2}}} \right) \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{n(n-1)}{2} \right)\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{32} \right)\left( \dfrac{36}{{{\left( n(n-1)(2n-1) \right)}^{2}}} \right) \\
\end{align}\]
By cancelling the common terms, we get
\[\begin{align}
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( n(n-1) \right)\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{16} \right)\left( \dfrac{9}{{{\left( n(n-1)(2n-1) \right)}^{2}}} \right) \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( n(n-1) \right)\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{16} \right)\left( \dfrac{9}{{{\left( n(n-1) \right)}^{2}}{{(2n-1)}^{2}}} \right) \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{16} \right)\left( \dfrac{9}{n(n-1){{(2n-1)}^{2}}} \right) \\
& =\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{9}{16} \right)\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{n(n-1){{(2n-1)}^{2}}} \right) \\
& =\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{32+{{n}^{2}}{{(n-1)}^{2}}}{n(n-1){{(2n-1)}^{2}}} \right) \\
\end{align}\]
By taking n term common from both denominator and numerator, we get
\[=\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{32+{{n}^{2}}\times {{n}^{2}}{{\left( 1-\dfrac{1}{n} \right)}^{2}}}{n\times n\left( 1-\dfrac{1}{n} \right)\times {{n}^{2}}{{\left( 2-\dfrac{1}{n} \right)}^{2}}} \right)\]
We know the formula \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\]. Thus, by applying this formula, we get
\[\begin{align}
& =\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{32+{{n}^{2+2}}{{\left( 1-\dfrac{1}{n} \right)}^{2}}}{{{n}^{1+1+2}}\left( 1-\dfrac{1}{n} \right){{\left( 2-\dfrac{1}{n} \right)}^{2}}} \right) \\
& =\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{32+{{n}^{4}}{{\left( 1-\dfrac{1}{n} \right)}^{2}}}{{{n}^{4}}\left( 1-\dfrac{1}{n} \right){{\left( 2-\dfrac{1}{n} \right)}^{2}}} \right) \\
& =\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{{{n}^{4}}\left( \dfrac{32}{{{n}^{4}}}+{{\left( 1-\dfrac{1}{n} \right)}^{2}} \right)}{{{n}^{4}}\left( 1-\dfrac{1}{n} \right){{\left( 2-\dfrac{1}{n} \right)}^{2}}} \right) \\
& =\dfrac{9}{16}\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{\left( \dfrac{32}{{{n}^{4}}}+{{\left( 1-\dfrac{1}{n} \right)}^{2}} \right)}{\left( 1-\dfrac{1}{n} \right){{\left( 2-\dfrac{1}{n} \right)}^{2}}} \right) \\
\end{align}\]
We know that if \[n\to \infty \] then \[\dfrac{1}{n}\to 0\]. Thus, by substituting the limit values in the above expression, we get
\[\begin{align}
& =\dfrac{9}{16}\left( \dfrac{\left( 32(0)+{{\left( 1-0 \right)}^{2}} \right)}{\left( 1-0 \right){{\left( 2-0 \right)}^{2}}} \right) \\
& =\dfrac{9}{16}\left( \dfrac{\left( 0+{{\left( 1 \right)}^{2}} \right)}{\left( 1 \right){{\left( 2 \right)}^{2}}} \right) \\
& =\dfrac{9}{16}\left( \dfrac{\left( 0+1 \right)}{\left( 1 \right)\left( 4 \right)} \right) \\
& =\dfrac{9}{16}\left( \dfrac{1}{4} \right) \\
& =\dfrac{9}{64} \\
\end{align}\]
Thus, the value of \[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{S}_{1}}\left( 1+\dfrac{{{S}_{3}}}{8} \right)}{S_{2}^{2}}\] is equal to \[\dfrac{9}{64}\]
Hence, option (d) is the right choice.
Note:The possibility of mistake can be, not applying the formula of \[\sum{n},\sum{{{n}^{2}}},\sum{{{n}^{3}}}\] which is important step to convert the given expression into expression in terms of n. The other possibility of mistake can be not applying the formula of algebraic expression in simplifying the given expression. The other possibility of mistake can be the calculation mistake since the procedure of solving involves multiple steps of solving.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

