
If \[{{r}_{1}}\] and \[{{r}_{2}}\] be the lengths of radii vectors of the parabola which are drawn at right angles to one another from the vertex, Prove that
\[{{r}_{1}}^{\dfrac{4}{3}}{{r}_{2}}^{\dfrac{4}{3}}=16{{a}^{2}}\left( {{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}} \right)\]
Answer
597.3k+ views
Hint: The coordinates of points where radius vector touches parabola, say $P$ and $Q$, can be obtained as \[\left( {{r}_{1}}\cos \theta ,{{r}_{1}}\sin \theta \right)\] and \[\left( {{r}_{2}}\sin \theta ,-{{r}_{2}}\cos \theta \right)\]. Then, these can be substituted in the equation of parabola to form equations.
Complete step by step answer:
Let us consider a parabola of the form \[{{y}^{2}}=4ax\].
Since \[{{r}_{1}}\] is a radius vector, let us consider that it makes an angle $\theta $ with the positive direction of \[x-\]axis and touches the parabola at point $P$.
So we can obtain the coordinates of point $P$ as \[\left( {{r}_{1}}\cos \theta ,{{r}_{1}}\sin \theta \right)\].
Now, it is said in the question that \[{{r}_{1}}\] and \[{{r}_{2}}\] are drawn at right angles to one another from the vertex. So, we can conclude that \[{{r}_{2}}\] makes an angle \[90-\theta \] with the positive direction of the \[x-\]axis and touches the parabola at point $Q$.
So we can obtain the coordinates of point $Q$ as \[\left( {{r}_{2}}\sin \theta ,-{{r}_{2}}\cos \theta \right)\].
Consider the figure as shown below.
Now, since $P$ and $Q$ lie on the parabola, they satisfy the equation of the parabola.
Therefore, we can substitute $P$\[\left( {{r}_{1}}\cos \theta ,{{r}_{1}}\sin \theta \right)\] in the parabola \[{{y}^{2}}=4ax\] as shown below,
\[\begin{align}
& {{\left( {{r}_{1}}\sin \theta \right)}^{2}}=4a{{r}_{1}}\cos \theta \\
& {{r}_{1}}^{2}{{\sin }^{2}}\theta =4a{{r}_{1}}\cos \theta \\
& {{r}_{1}}{{\sin }^{2}}\theta =4a\cos \theta \ldots \ldots \ldots \left( i \right) \\
\end{align}\]
Now let us substitute the point $Q$\[\left( {{r}_{2}}\sin \theta ,-{{r}_{2}}\cos \theta \right)\]in the parabola \[{{y}^{2}}=4ax\] as shown below,
\[\begin{align}
& {{\left( -{{r}_{2}}\cos \theta \right)}^{2}}=4a{{r}_{2}}\sin \theta \\
& {{r}_{2}}^{2}{{\cos }^{2}}\theta =4a{{r}_{2}}\sin \theta \\
& {{r}_{2}}{{\cos }^{2}}\theta =4a\sin \theta \ldots \ldots \ldots \left( ii \right) \\
\end{align}\]
Let us divide equation \[\left( i \right)\] by \[\left( ii \right)\]
$\dfrac{{{r}_{1}}{{\sin }^{2}}\theta }{{{r}_{2}}{{\cos }^{2}}\theta }=\dfrac{4a\cos \theta }{4a\sin \theta }$
On cancelling the like terms, we get
$\dfrac{{{r}_{1}}{{\sin }^{2}}\theta }{{{r}_{2}}{{\cos }^{2}}\theta }=\dfrac{\cos \theta }{\sin \theta }$
On rearranging the terms, we get
$\dfrac{{{\sin }^{3}}\theta }{{{\cos }^{3}}\theta }=\dfrac{{{r}_{2}}}{{{r}_{1}}}$
Since we know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta $, we can write
$\begin{align}
& {{\tan }^{3}}\theta =\dfrac{{{r}_{2}}}{{{r}_{1}}} \\
& \tan \theta ={{\left( \dfrac{{{r}_{2}}}{{{r}_{1}}} \right)}^{\dfrac{1}{3}}} \\
\end{align}$
We can use the trigonometric relation \[\cos \theta =\dfrac{1}{\sqrt{1+{{\tan }^{2}}\theta }}\] and substitute the above result in it.
\[\begin{align}
& \cos \theta =\dfrac{1}{\sqrt{1+{{\left[ {{\left( \dfrac{{{r}_{2}}}{{{r}_{1}}} \right)}^{\dfrac{1}{3}}} \right]}^{2}}}} \\
& \cos \theta =\dfrac{1}{\sqrt{1+{{\left( \dfrac{{{r}_{2}}}{{{r}_{1}}} \right)}^{\dfrac{2}{3}}}}} \\
\end{align}\]
Taking the LCM, we get
\[\begin{align}
& \cos \theta =\dfrac{1}{\sqrt{\dfrac{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}{{{r}_{1}}^{\dfrac{2}{3}}}}} \\
& \cos \theta =\dfrac{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
& \cos \theta =\dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
\end{align}\]
We can also use the trigonometric relation \[\sin \theta =\tan \theta \times \cos \theta \] and substitute $\tan \theta ={{\left( \dfrac{{{r}_{2}}}{{{r}_{1}}} \right)}^{\dfrac{1}{3}}}$ and \[\cos \theta =\dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}}\] in it. So, we will get
$\begin{align}
& \sin \theta ={{\left( \dfrac{{{r}_{2}}}{{{r}_{1}}} \right)}^{\dfrac{1}{3}}}\times \dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
& \sin \theta =\dfrac{{{r}_{2}}^{\dfrac{1}{3}}}{{{r}_{1}}^{\dfrac{1}{3}}}\times \dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
& \sin \theta =\dfrac{{{r}_{2}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
\end{align}$
On substituting \[\cos \theta =\dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}}\] and \[\sin \theta =\dfrac{{{r}_{2}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}}\] in equation \[\left( i \right)\], we get
\[\begin{align}
& {{r}_{1}}{{\left( \dfrac{{{r}_{2}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \right)}^{2}}=4a\dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
& {{r}_{1}}\dfrac{{{r}_{2}}^{\dfrac{2}{3}}}{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}=4a\dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
\end{align}\]
On rearranging the terms, we get
\[\begin{align}
& {{r}_{1}}\dfrac{{{r}_{2}}^{\dfrac{2}{3}}}{{{r}_{1}}^{\dfrac{1}{3}}}=4a\dfrac{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
& {{r}_{1}}^{\left( 1-\dfrac{1}{3} \right)}{{r}_{2}}^{\dfrac{2}{3}}=4a\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}} \\
& {{r}_{1}}^{\dfrac{2}{3}}{{r}_{2}}^{\dfrac{2}{3}}=4a\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}} \\
\end{align}\]
Squaring both sides, we get
\[\begin{align}
& {{\left( {{r}_{1}}^{\dfrac{2}{3}}{{r}_{2}}^{\dfrac{2}{3}} \right)}^{2}}={{\left[ 4a\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}} \right]}^{2}} \\
& {{r}_{1}}^{\dfrac{4}{3}}{{r}_{2}}^{\dfrac{4}{3}}=16{{a}^{2}}\left( {{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}} \right) \\
\end{align}\]
Therefore, we have proved that if \[{{r}_{1}}\] and \[{{r}_{2}}\] be the lengths of radii vectors of the parabola which are drawn at right angles to one another from the vertex, \[{{r}_{1}}^{\dfrac{4}{3}}{{r}_{2}}^{\dfrac{4}{3}}=16{{a}^{2}}\left( {{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}} \right)\].
Note: The choice of the parabola i.e. either \[{{y}^{2}}=4ax\] or \[{{x}^{2}}=4ay\] is important. Great attention must be paid as the points chosen will change accordingly. For the parabola, \[{{x}^{2}}=4ay\], the coordinates of points $P$ and $Q$ would be \[\left( {{r}_{1}}\cos \theta ,{{r}_{1}}\sin \theta \right)\] and \[\left( -{{r}_{2}}\cos \theta ,{{r}_{2}}\sin \theta \right)\] respectively.
Complete step by step answer:
Let us consider a parabola of the form \[{{y}^{2}}=4ax\].
Since \[{{r}_{1}}\] is a radius vector, let us consider that it makes an angle $\theta $ with the positive direction of \[x-\]axis and touches the parabola at point $P$.
So we can obtain the coordinates of point $P$ as \[\left( {{r}_{1}}\cos \theta ,{{r}_{1}}\sin \theta \right)\].
Now, it is said in the question that \[{{r}_{1}}\] and \[{{r}_{2}}\] are drawn at right angles to one another from the vertex. So, we can conclude that \[{{r}_{2}}\] makes an angle \[90-\theta \] with the positive direction of the \[x-\]axis and touches the parabola at point $Q$.
So we can obtain the coordinates of point $Q$ as \[\left( {{r}_{2}}\sin \theta ,-{{r}_{2}}\cos \theta \right)\].
Consider the figure as shown below.
Now, since $P$ and $Q$ lie on the parabola, they satisfy the equation of the parabola.
Therefore, we can substitute $P$\[\left( {{r}_{1}}\cos \theta ,{{r}_{1}}\sin \theta \right)\] in the parabola \[{{y}^{2}}=4ax\] as shown below,
\[\begin{align}
& {{\left( {{r}_{1}}\sin \theta \right)}^{2}}=4a{{r}_{1}}\cos \theta \\
& {{r}_{1}}^{2}{{\sin }^{2}}\theta =4a{{r}_{1}}\cos \theta \\
& {{r}_{1}}{{\sin }^{2}}\theta =4a\cos \theta \ldots \ldots \ldots \left( i \right) \\
\end{align}\]
Now let us substitute the point $Q$\[\left( {{r}_{2}}\sin \theta ,-{{r}_{2}}\cos \theta \right)\]in the parabola \[{{y}^{2}}=4ax\] as shown below,
\[\begin{align}
& {{\left( -{{r}_{2}}\cos \theta \right)}^{2}}=4a{{r}_{2}}\sin \theta \\
& {{r}_{2}}^{2}{{\cos }^{2}}\theta =4a{{r}_{2}}\sin \theta \\
& {{r}_{2}}{{\cos }^{2}}\theta =4a\sin \theta \ldots \ldots \ldots \left( ii \right) \\
\end{align}\]
Let us divide equation \[\left( i \right)\] by \[\left( ii \right)\]
$\dfrac{{{r}_{1}}{{\sin }^{2}}\theta }{{{r}_{2}}{{\cos }^{2}}\theta }=\dfrac{4a\cos \theta }{4a\sin \theta }$
On cancelling the like terms, we get
$\dfrac{{{r}_{1}}{{\sin }^{2}}\theta }{{{r}_{2}}{{\cos }^{2}}\theta }=\dfrac{\cos \theta }{\sin \theta }$
On rearranging the terms, we get
$\dfrac{{{\sin }^{3}}\theta }{{{\cos }^{3}}\theta }=\dfrac{{{r}_{2}}}{{{r}_{1}}}$
Since we know that $\dfrac{\sin \theta }{\cos \theta }=\tan \theta $, we can write
$\begin{align}
& {{\tan }^{3}}\theta =\dfrac{{{r}_{2}}}{{{r}_{1}}} \\
& \tan \theta ={{\left( \dfrac{{{r}_{2}}}{{{r}_{1}}} \right)}^{\dfrac{1}{3}}} \\
\end{align}$
We can use the trigonometric relation \[\cos \theta =\dfrac{1}{\sqrt{1+{{\tan }^{2}}\theta }}\] and substitute the above result in it.
\[\begin{align}
& \cos \theta =\dfrac{1}{\sqrt{1+{{\left[ {{\left( \dfrac{{{r}_{2}}}{{{r}_{1}}} \right)}^{\dfrac{1}{3}}} \right]}^{2}}}} \\
& \cos \theta =\dfrac{1}{\sqrt{1+{{\left( \dfrac{{{r}_{2}}}{{{r}_{1}}} \right)}^{\dfrac{2}{3}}}}} \\
\end{align}\]
Taking the LCM, we get
\[\begin{align}
& \cos \theta =\dfrac{1}{\sqrt{\dfrac{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}{{{r}_{1}}^{\dfrac{2}{3}}}}} \\
& \cos \theta =\dfrac{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
& \cos \theta =\dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
\end{align}\]
We can also use the trigonometric relation \[\sin \theta =\tan \theta \times \cos \theta \] and substitute $\tan \theta ={{\left( \dfrac{{{r}_{2}}}{{{r}_{1}}} \right)}^{\dfrac{1}{3}}}$ and \[\cos \theta =\dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}}\] in it. So, we will get
$\begin{align}
& \sin \theta ={{\left( \dfrac{{{r}_{2}}}{{{r}_{1}}} \right)}^{\dfrac{1}{3}}}\times \dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
& \sin \theta =\dfrac{{{r}_{2}}^{\dfrac{1}{3}}}{{{r}_{1}}^{\dfrac{1}{3}}}\times \dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
& \sin \theta =\dfrac{{{r}_{2}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
\end{align}$
On substituting \[\cos \theta =\dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}}\] and \[\sin \theta =\dfrac{{{r}_{2}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}}\] in equation \[\left( i \right)\], we get
\[\begin{align}
& {{r}_{1}}{{\left( \dfrac{{{r}_{2}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \right)}^{2}}=4a\dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
& {{r}_{1}}\dfrac{{{r}_{2}}^{\dfrac{2}{3}}}{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}=4a\dfrac{{{r}_{1}}^{\dfrac{1}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
\end{align}\]
On rearranging the terms, we get
\[\begin{align}
& {{r}_{1}}\dfrac{{{r}_{2}}^{\dfrac{2}{3}}}{{{r}_{1}}^{\dfrac{1}{3}}}=4a\dfrac{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}{\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}}} \\
& {{r}_{1}}^{\left( 1-\dfrac{1}{3} \right)}{{r}_{2}}^{\dfrac{2}{3}}=4a\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}} \\
& {{r}_{1}}^{\dfrac{2}{3}}{{r}_{2}}^{\dfrac{2}{3}}=4a\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}} \\
\end{align}\]
Squaring both sides, we get
\[\begin{align}
& {{\left( {{r}_{1}}^{\dfrac{2}{3}}{{r}_{2}}^{\dfrac{2}{3}} \right)}^{2}}={{\left[ 4a\sqrt{{{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}}} \right]}^{2}} \\
& {{r}_{1}}^{\dfrac{4}{3}}{{r}_{2}}^{\dfrac{4}{3}}=16{{a}^{2}}\left( {{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}} \right) \\
\end{align}\]
Therefore, we have proved that if \[{{r}_{1}}\] and \[{{r}_{2}}\] be the lengths of radii vectors of the parabola which are drawn at right angles to one another from the vertex, \[{{r}_{1}}^{\dfrac{4}{3}}{{r}_{2}}^{\dfrac{4}{3}}=16{{a}^{2}}\left( {{r}_{1}}^{\dfrac{2}{3}}+{{r}_{2}}^{\dfrac{2}{3}} \right)\].
Note: The choice of the parabola i.e. either \[{{y}^{2}}=4ax\] or \[{{x}^{2}}=4ay\] is important. Great attention must be paid as the points chosen will change accordingly. For the parabola, \[{{x}^{2}}=4ay\], the coordinates of points $P$ and $Q$ would be \[\left( {{r}_{1}}\cos \theta ,{{r}_{1}}\sin \theta \right)\] and \[\left( -{{r}_{2}}\cos \theta ,{{r}_{2}}\sin \theta \right)\] respectively.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

