Answer
Verified
492k+ views
Hint: Use area of triangle formula, where two sides of triangle and angle between them is given. Use sine rule related with circumradius to get the given relation.
Complete step-by-step answer:
Here, we have given R as a radius of circumcircle i.e. circumradius and need to prove the relation;
$R=\dfrac{abc}{4S}$……………….(1)
Where (a, b, c) are sides of the triangle as denoted in the diagram.
Where O is the centre of the circle C, which is circumscribing the triangle ABC.
R = Circumradius of triangle ABC.
We can write sine rule in $\Delta ABC$ involving circumradius R as;
$\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=\dfrac{1}{2R}..............\left( 2 \right)$
As we have a formula of area with involvement of two sides and angle between them.
Let the area be represented by S.
$Area=S=\dfrac{1}{2}bc\sin A=\dfrac{1}{2}ab\sin C=\dfrac{1}{2}ac\sin B........\left( 3 \right)$
Now, from equation (2) and (3), we can write an equation with respect to one angle as
$\dfrac{\sin A}{a}=\dfrac{1}{2R}\text{ and }S=\dfrac{1}{2}bc\sin A$
Substituting value of sin A from the relation $\dfrac{\sin A}{a}=\dfrac{1}{2R}\text{ to }S=\dfrac{1}{2}bc\sin A$, we get;
As $\sin A=\dfrac{a}{2R}$ from the first relation, now putting value of sin A in $S=\dfrac{1}{2}bc\sin A$, we get
$\begin{align}
& S=\dfrac{1}{2}bc\dfrac{a}{2R} \\
& S=\dfrac{abc}{4R} \\
\end{align}$
Transferring R to other side, we get;
$R=\dfrac{abc}{4S}$
Hence, the relation given in the problem is true.
Note: One can go wrong with the formula of area of the triangle. One can apply heron’s formula for proving i.e.
$\begin{align}
& S=\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)} \\
& s=\dfrac{a+b+c}{2} \\
\end{align}$
Which will make the solution very complex.
One can go wrong while writing sine rule as;
$\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=\dfrac{2R}{1}$ which is wrong.
Correct equation of sine rule will be,
$\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=\dfrac{1}{2R}$.
Complete step-by-step answer:
Here, we have given R as a radius of circumcircle i.e. circumradius and need to prove the relation;
$R=\dfrac{abc}{4S}$……………….(1)
Where (a, b, c) are sides of the triangle as denoted in the diagram.
Where O is the centre of the circle C, which is circumscribing the triangle ABC.
R = Circumradius of triangle ABC.
We can write sine rule in $\Delta ABC$ involving circumradius R as;
$\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=\dfrac{1}{2R}..............\left( 2 \right)$
As we have a formula of area with involvement of two sides and angle between them.
Let the area be represented by S.
$Area=S=\dfrac{1}{2}bc\sin A=\dfrac{1}{2}ab\sin C=\dfrac{1}{2}ac\sin B........\left( 3 \right)$
Now, from equation (2) and (3), we can write an equation with respect to one angle as
$\dfrac{\sin A}{a}=\dfrac{1}{2R}\text{ and }S=\dfrac{1}{2}bc\sin A$
Substituting value of sin A from the relation $\dfrac{\sin A}{a}=\dfrac{1}{2R}\text{ to }S=\dfrac{1}{2}bc\sin A$, we get;
As $\sin A=\dfrac{a}{2R}$ from the first relation, now putting value of sin A in $S=\dfrac{1}{2}bc\sin A$, we get
$\begin{align}
& S=\dfrac{1}{2}bc\dfrac{a}{2R} \\
& S=\dfrac{abc}{4R} \\
\end{align}$
Transferring R to other side, we get;
$R=\dfrac{abc}{4S}$
Hence, the relation given in the problem is true.
Note: One can go wrong with the formula of area of the triangle. One can apply heron’s formula for proving i.e.
$\begin{align}
& S=\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)} \\
& s=\dfrac{a+b+c}{2} \\
\end{align}$
Which will make the solution very complex.
One can go wrong while writing sine rule as;
$\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=\dfrac{2R}{1}$ which is wrong.
Correct equation of sine rule will be,
$\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=\dfrac{1}{2R}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE