Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If $r < 1$ and positive and m is a positive integer, show that \[\left( 2m+1 \right){{r}^{m}}\left( 1-r \right) < 1-{{r}^{2m+1}}\]. Hence show that $n{{r}^{n}}$ is infinitely small when n is infinitely great.

Answer
VerifiedVerified
574.5k+ views
Hint: We have to form a G.P. of $a,ar,a{{r}^{2}},a{{r}^{3}},a{{r}^{4}},........,a{{r}^{n-1}}$. Then we need to apply the theorem of $A.M. > G.M.$ taking dual terms from both ends together like $1,{{r}^{2m}}$, $r,{{r}^{2m-1}}$………
We get the inequality of $\left( 2m+1 \right){{r}^{m}} < \dfrac{1-{{r}^{2m+1}}}{1-r}$ and find the proof for $\left( 2m+1 \right){{r}^{m}}\left( 1-r \right) < 1-{{r}^{2m+1}}$.

Complete step by step answer:
We try to form the given inequality in the form of a series of G.P.
In \[\left( 2m+1 \right){{r}^{m}}\left( 1-r \right) < 1-{{r}^{2m+1}}\], we divide by \[\left( 1-r \right)\].
\[\begin{align}
  & \left( 2m+1 \right){{r}^{m}}\left( 1-r \right) < 1-{{r}^{2m+1}} \\
 & \Rightarrow \dfrac{\left( 2m+1 \right){{r}^{m}}\left( 1-r \right)}{\left( 1-r \right)} < \dfrac{1-{{r}^{2m+1}}}{\left( 1-r \right)} \\
 & \Rightarrow \left( 2m+1 \right){{r}^{m}} < \dfrac{1-{{r}^{2m+1}}}{\left( 1-r \right)} \\
\end{align}\]
The right part is a sum of a G.P. series.
So, we take a G.P. series of $1,r,{{r}^{2}},{{r}^{3}},{{r}^{4}},........,{{r}^{2m}}$ where $r < 1$ and positive and m is a positive integer.
So, in a series of G.P. of $a,ar,a{{r}^{2}},a{{r}^{3}},a{{r}^{4}},........,a{{r}^{n-1}}$ where $r < 1$ the sum will be \[a\dfrac{1-{{r}^{n}}}{1-r}\].
Here, $a=1,n=2m$. So, sum of $1,r,{{r}^{2}},{{r}^{3}},{{r}^{4}},........,{{r}^{2m}}$ will be \[\dfrac{1-{{r}^{2m+1}}}{1-r}\].
Now we have the middle term of the series $1,r,{{r}^{2}},{{r}^{3}},{{r}^{4}},........,{{r}^{2m}}$ as ${{r}^{m}}$. There are $\left( 2m+1 \right)$ terms in the series $1,r,{{r}^{2}},{{r}^{3}},{{r}^{4}},........,{{r}^{2m}}$.
We have the theorem of $A.M. > G.M.$
In the series $1,r,{{r}^{2}},{{r}^{3}},{{r}^{4}},........,{{r}^{2m}}$, we take dual terms from both ends together like $1,{{r}^{2m}}$, $r,{{r}^{2m-1}}$…….. and apply the above theorem of $A.M. > G.M.$
So, $\dfrac{1+{{r}^{2m}}}{2} > \sqrt{1\times {{r}^{2m}}}\Rightarrow 1+{{r}^{2m}} > 2{{r}^{m}}$ and $\dfrac{r+{{r}^{2m-1}}}{2} > \sqrt{r\times {{r}^{2m-1}}}\Rightarrow r+{{r}^{2m-1}} > 2{{r}^{m}}$
This process continues for all the terms of the series $1,r,{{r}^{2}},{{r}^{3}},{{r}^{4}},........,{{r}^{2m}}$ other than the middle term ${{r}^{m}}$as there are $\left( 2m+1 \right)$ terms in the series.
We take the sum of the inequalities
$\begin{align}
  & \left( 1+{{r}^{2m}} \right)+\left( r+{{r}^{2m-1}} \right)+......+\left( {{r}^{m-1}}+{{r}^{m+1}} \right) > 2{{r}^{m}}+2{{r}^{m}}+...... \\
 & \Rightarrow 1+{{r}^{2m}}+r+{{r}^{2m-1}}+.....+{{r}^{m-1}}+{{r}^{m+1}} > 2m{{r}^{m}} \\
 & \Rightarrow 1+r+{{r}^{2}}+.....+{{r}^{m-1}}+{{r}^{m+1}}+........+{{r}^{2m}} > 2m{{r}^{m}} \\
\end{align}$.
We add the middle term on the both sides ${{r}^{m}}$.
$\begin{align}
  & 1+r+{{r}^{2}}+.....+{{r}^{m-1}}+{{r}^{m+1}}+........+{{r}^{2m}} > 2m{{r}^{m}} \\
 & \Rightarrow 1+r+{{r}^{2}}+.....+{{r}^{m-1}}+{{r}^{m}}+{{r}^{m+1}}+........+{{r}^{2m}} > 2m{{r}^{m}}+{{r}^{m}} \\
 & \Rightarrow 1+r+{{r}^{2}}+.....+{{r}^{m-1}}+{{r}^{m}}+{{r}^{m+1}}+........+{{r}^{2m}} > \left( 2m+1 \right){{r}^{m}} \\
 & \Rightarrow \left( 2m+1 \right){{r}^{m}} < 1+r+{{r}^{2}}+.....+{{r}^{m-1}}+{{r}^{m}}+{{r}^{m+1}}+........+{{r}^{2m}} \\
\end{align}$
We have the sum of the left side of the inequality where \[1+r+{{r}^{2}}+........+{{r}^{2m}}=\dfrac{1-{{r}^{2m+1}}}{1-r}\].
We replace the value and get
$\begin{align}
  & \left( 2m+1 \right){{r}^{m}} < 1+r+{{r}^{2}}+.....+{{r}^{m-1}}+{{r}^{m}}+{{r}^{m+1}}+........+{{r}^{2m}} \\
 & \Rightarrow \left( 2m+1 \right){{r}^{m}} < \dfrac{1-{{r}^{2m+1}}}{1-r} \\
 & \Rightarrow \left( 2m+1 \right){{r}^{m}}\left( 1-r \right) < 1-{{r}^{2m+1}} \\
\end{align}$
Thus proved.
Now $r < 1$ and positive and n is a positive integer. In the range of $-1 < r < 1$ we have the curve of $n{{r}^{n}}$ as tending to 0. As $r < 1$, it’s more like a fraction and we can express it as $\dfrac{1}{m}$ where $m > 1$. So, ${{r}^{n}}=\dfrac{1}{{{m}^{n}}}$.
Here, $n\to \infty \Rightarrow {{m}^{n}}\to \infty \Rightarrow \left( {{r}^{n}}=\dfrac{1}{{{m}^{n}}} \right)\to 0$.

So, $n{{r}^{n}}$ is infinitely small when n is infinitely great.

Note: We need to be careful when we are trying to take duals as there are an odd number of terms in the series. The term n in $n{{r}^{n}}$ will not be considered at the time of finding the value of $n{{r}^{n}}$. Even though n tends to infinity the value of ${{r}^{n}}$ steers the rate of the value as it has the indices.