
If P(x) is a polynomial of degree less than or equal to 2 and S is the set of all such polynomials so that $P\left( 0 \right)=0,P\left( 1 \right)=1,P'\left( x \right)>0\forall x\in \left[ 0,1 \right]$, then
(a) $S=\varnothing $
(b) $S=ax+\left( 1-a \right){{x}^{2}}$, $\forall a\in \left( 0,2 \right)$
(c) $S=ax+\left( 1-a \right){{x}^{2}}$, $\forall a\in \left( 0,\infty \right)$
(d) $S=ax+\left( 1-a \right){{x}^{2}}$, $\forall a\in \left( 0,1 \right)$
Answer
600.6k+ views
Hint: Assume that the polynomial P(x) is of the form $b{{x}^{2}}+ax+c$. Apply the conditions given in the question on this polynomial. Simplify the equations to find the value of the variables a, b, and c and thus, the set S.
Complete step-by-step answer:
We have a polynomial P(x) of degree less than or equal to 2. We have certain conditions imposed on the polynomial. We have to find the set S of all the polynomials which satisfy the given conditions.
Let’s assume that the polynomial P(x) is of the form $b{{x}^{2}}+ax+c$.
We know that $P\left( 0 \right)=0$.
Substituting $x=0$ in the equation $P\left( x \right)=b{{x}^{2}}+ax+c$, we have $b{{\left( 0 \right)}^{2}}+a\left( 0 \right)+c=0$. Thus, we have $c=0$.
So, we have $P\left( x \right)=b{{x}^{2}}+ax$.
We know that $P\left( 1 \right)=1$.
Substituting $x=1$ in the equation $P\left( x \right)=b{{x}^{2}}+ax$, we have $b{{\left( 1 \right)}^{2}}+a\left( 1 \right)=1$. Thus, we have $a+b=1$.
We can rewrite the above equation as $b=1-a$.
Thus, we can rewrite P(x) as $P\left( x \right)=b{{x}^{2}}+ax=\left( 1-a \right){{x}^{2}}+ax$.
Now, we know that $P'\left( x \right)>0\forall x\in \left[ 0,1 \right]$.
We will differentiate the function $P\left( x \right)=\left( 1-a \right){{x}^{2}}+ax$.
We know that differentiation of function of the form $y=a{{x}^{n}}$ is $\dfrac{dy}{dx}=an{{x}^{n-1}}$.
Thus, we have $\dfrac{dP\left( x \right)}{dx}=\dfrac{d}{dx}\left( \left( 1-a \right){{x}^{2}}+ax \right)=\dfrac{d}{dx}\left( \left( 1-a \right){{x}^{2}} \right)+\dfrac{d}{dx}\left( ax \right)$.
So, we have $\dfrac{dP\left( x \right)}{dx}=\dfrac{d}{dx}\left( \left( 1-a \right){{x}^{2}} \right)+\dfrac{d}{dx}\left( ax \right)=\left( 1-a \right)2x+a$.
Thus, we have $2\left( 1-a \right)x+a>0\forall x\in \left[ 0,1 \right]$.
We will now substitute $x=0$ in the above expression. Thus, we have $2\left( 1-a \right)0+a>0\Rightarrow a>0$.
We will now substitute $x=1$ in the above expression. Thus, we have $2\left( 1-a \right)1+a>0\Rightarrow 2-2a+a>0\Rightarrow 2-a>0\Rightarrow a<2$.
Thus, we have $a>0$ and $a<2$, which means $0Hence, the set S is $S=ax+\left( 1-a \right){{x}^{2}}$, $\forall a\in \left( 0,2 \right)$, which is option (b).
Note: One must impose all the conditions given in the question to find all the possible elements of the set S. We can also take P(x) of the form $ax+b$ or $a$ as the polynomial P(x) can have degree less than or equal to 2. However, we will get the same answer as above.
Complete step-by-step answer:
We have a polynomial P(x) of degree less than or equal to 2. We have certain conditions imposed on the polynomial. We have to find the set S of all the polynomials which satisfy the given conditions.
Let’s assume that the polynomial P(x) is of the form $b{{x}^{2}}+ax+c$.
We know that $P\left( 0 \right)=0$.
Substituting $x=0$ in the equation $P\left( x \right)=b{{x}^{2}}+ax+c$, we have $b{{\left( 0 \right)}^{2}}+a\left( 0 \right)+c=0$. Thus, we have $c=0$.
So, we have $P\left( x \right)=b{{x}^{2}}+ax$.
We know that $P\left( 1 \right)=1$.
Substituting $x=1$ in the equation $P\left( x \right)=b{{x}^{2}}+ax$, we have $b{{\left( 1 \right)}^{2}}+a\left( 1 \right)=1$. Thus, we have $a+b=1$.
We can rewrite the above equation as $b=1-a$.
Thus, we can rewrite P(x) as $P\left( x \right)=b{{x}^{2}}+ax=\left( 1-a \right){{x}^{2}}+ax$.
Now, we know that $P'\left( x \right)>0\forall x\in \left[ 0,1 \right]$.
We will differentiate the function $P\left( x \right)=\left( 1-a \right){{x}^{2}}+ax$.
We know that differentiation of function of the form $y=a{{x}^{n}}$ is $\dfrac{dy}{dx}=an{{x}^{n-1}}$.
Thus, we have $\dfrac{dP\left( x \right)}{dx}=\dfrac{d}{dx}\left( \left( 1-a \right){{x}^{2}}+ax \right)=\dfrac{d}{dx}\left( \left( 1-a \right){{x}^{2}} \right)+\dfrac{d}{dx}\left( ax \right)$.
So, we have $\dfrac{dP\left( x \right)}{dx}=\dfrac{d}{dx}\left( \left( 1-a \right){{x}^{2}} \right)+\dfrac{d}{dx}\left( ax \right)=\left( 1-a \right)2x+a$.
Thus, we have $2\left( 1-a \right)x+a>0\forall x\in \left[ 0,1 \right]$.
We will now substitute $x=0$ in the above expression. Thus, we have $2\left( 1-a \right)0+a>0\Rightarrow a>0$.
We will now substitute $x=1$ in the above expression. Thus, we have $2\left( 1-a \right)1+a>0\Rightarrow 2-2a+a>0\Rightarrow 2-a>0\Rightarrow a<2$.
Thus, we have $a>0$ and $a<2$, which means $0Hence, the set S is $S=ax+\left( 1-a \right){{x}^{2}}$, $\forall a\in \left( 0,2 \right)$, which is option (b).
Note: One must impose all the conditions given in the question to find all the possible elements of the set S. We can also take P(x) of the form $ax+b$ or $a$ as the polynomial P(x) can have degree less than or equal to 2. However, we will get the same answer as above.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

