
If \[P(x) = \dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}}\], then for all real values of \[x\], \[P(x)\] is equals
A. \[1\]
B. \[0\]
C. \[x\]
D. \[\dfrac{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
Answer
521.7k+ views
Hint: First we have to know a polynomial function is a function such as a quadratic, a cubic, a quartic, and so on, involving only non-negative integer powers of x. Using the standard algebraic formulas, we simplify the given polynomial function as much as possible. After that we rewrote the simplify function to reduce it.
Complete step by step answer:
Some important algebra formulas:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
\[{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right)\]
\[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\]
\[{a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\]
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
Given \[P(x) = \dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}}\]------(1)
The equation (1) can be rewrite as
\[P(x) = - \dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {c - a} \right)}} - \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {b - c} \right)\left( {a - b} \right)}} - \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {c - a} \right)\left( {b - c} \right)}}\]------(2)
Taking LCM in the RHS of the equation (2) becomes
\[P(x) = - \dfrac{{\left[ {\left( {x - b} \right)\left( {x - c} \right)\left( {b - c} \right) + \left( {x - c} \right)\left( {x - a} \right)\left( {c - a} \right) + \left( {x - a} \right)\left( {x - b} \right)\left( {a - b} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]----(3)
We know that \[\left( {x - a} \right)\left( {x - b} \right) = {x^2} - x(a + b) + ab\], then the equation (4) becomes
\[P(x) = - \dfrac{{\left[ {\left( {{x^2} - x(b + c) + bc} \right)\left( {b - c} \right) + \left( {{x^2} - x(a + c) + ac} \right)\left( {c - a} \right) + \left( {{x^2} - x(b + a) + ab} \right)\left( {a - b} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]---(4)
Since \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\] then the equation (4) becomes
\[P(x) = - \dfrac{{\left[ {\left( {{x^2}\left( {b - c + c - a + a - b} \right) - x({b^2} - {c^2} + {c^2} - {a^2} + {a^2} - {b^2}) + bc\left( {b - c} \right) + ac\left( {c - a} \right) + ab\left( {a - b} \right)} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]---(5)
Simplifying the equation (5) we get
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {\left( {{x^2}\left( 0 \right) - x(0) + {b^2}c - b{c^2} + a{c^2} - {a^2}c + {a^2}b - a{b^2}} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {{b^2}c - b{c^2} + a{c^2} - {a^2}c + {a^2}b - a{b^2}} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
Rewriting the above equation to cancel some terms and reduce it
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {\left( {{b^2} - {a^2}} \right)c + {c^2}\left( {a - b} \right) + ab\left( {a - b} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {\left( {a - b} \right)\left( { - \left( {a + b} \right)c + {c^2} + ab} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {\left( {a - b} \right)\left( { - ac - bc + {c^2} + ab} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {\left( {a - b} \right)\left( {c\left( {c - a} \right) - b\left( {c - a} \right)} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \]\[P(x) = \dfrac{{\left( {a - b} \right)\left( {c - a} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\].
\[P(x) = 1\] for all values of \[x\].
So, the correct answer is “Option A”.
Note: Note that a polynomial is defined as an expression which is composed of variables, constants and exponents, that are combined using the mathematical operations such as addition, subtraction, multiplication and division. A polynomial is a function of the form \[f(x) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + .... + {a_2}{x^2} + {a_1}x + {a_0}\]. The degree of a polynomial is the highest power of \[x\] in its expression.
Complete step by step answer:
Some important algebra formulas:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
\[{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3ab\left( {a - b} \right)\]
\[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\]
\[{a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\]
\[{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\]
Given \[P(x) = \dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}}\]------(1)
The equation (1) can be rewrite as
\[P(x) = - \dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {c - a} \right)}} - \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {b - c} \right)\left( {a - b} \right)}} - \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {c - a} \right)\left( {b - c} \right)}}\]------(2)
Taking LCM in the RHS of the equation (2) becomes
\[P(x) = - \dfrac{{\left[ {\left( {x - b} \right)\left( {x - c} \right)\left( {b - c} \right) + \left( {x - c} \right)\left( {x - a} \right)\left( {c - a} \right) + \left( {x - a} \right)\left( {x - b} \right)\left( {a - b} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]----(3)
We know that \[\left( {x - a} \right)\left( {x - b} \right) = {x^2} - x(a + b) + ab\], then the equation (4) becomes
\[P(x) = - \dfrac{{\left[ {\left( {{x^2} - x(b + c) + bc} \right)\left( {b - c} \right) + \left( {{x^2} - x(a + c) + ac} \right)\left( {c - a} \right) + \left( {{x^2} - x(b + a) + ab} \right)\left( {a - b} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]---(4)
Since \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\] then the equation (4) becomes
\[P(x) = - \dfrac{{\left[ {\left( {{x^2}\left( {b - c + c - a + a - b} \right) - x({b^2} - {c^2} + {c^2} - {a^2} + {a^2} - {b^2}) + bc\left( {b - c} \right) + ac\left( {c - a} \right) + ab\left( {a - b} \right)} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]---(5)
Simplifying the equation (5) we get
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {\left( {{x^2}\left( 0 \right) - x(0) + {b^2}c - b{c^2} + a{c^2} - {a^2}c + {a^2}b - a{b^2}} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {{b^2}c - b{c^2} + a{c^2} - {a^2}c + {a^2}b - a{b^2}} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
Rewriting the above equation to cancel some terms and reduce it
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {\left( {{b^2} - {a^2}} \right)c + {c^2}\left( {a - b} \right) + ab\left( {a - b} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {\left( {a - b} \right)\left( { - \left( {a + b} \right)c + {c^2} + ab} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {\left( {a - b} \right)\left( { - ac - bc + {c^2} + ab} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \]\[P(x) = - \dfrac{{\left[ {\left( {a - b} \right)\left( {c\left( {c - a} \right) - b\left( {c - a} \right)} \right)} \right]}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \]\[P(x) = \dfrac{{\left( {a - b} \right)\left( {c - a} \right)\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\].
\[P(x) = 1\] for all values of \[x\].
So, the correct answer is “Option A”.
Note: Note that a polynomial is defined as an expression which is composed of variables, constants and exponents, that are combined using the mathematical operations such as addition, subtraction, multiplication and division. A polynomial is a function of the form \[f(x) = {a_n}{x^n} + {a_{n - 1}}{x^{n - 1}} + .... + {a_2}{x^2} + {a_1}x + {a_0}\]. The degree of a polynomial is the highest power of \[x\] in its expression.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

