
If PQRS is a convex quadrilateral with 3, 4, 5 and 6 points marked on side PQ, QR, RS and PS respectively. Then the number of triangles with vertices on different sides is:
A) 220
B) 270
C) 282
D) 342
Answer
618.6k+ views
Hint: Number of sides of a triangle is 3; consider 3 sides of the convex quadrilateral to bring out the number of triangles.
Complete step by step answer:
A convex quadrilateral is a 4 sided polygon that has interior angles that measures less than 180 degrees each.
Consider the convex quadrilateral PQRS shown in the figure.
Complete step by step answer:
A convex quadrilateral is a 4 sided polygon that has interior angles that measures less than 180 degrees each.
Consider the convex quadrilateral PQRS shown in the figure.
\[\begin{align}
& \therefore PQ={}^{3}{{C}_{1}} \\
& QR={}^{4}{{C}_{1}} \\
& RS={}^{5}{{C}_{1}} \\
& PS={}^{6}{{C}_{1}} \\
\end{align}\]
3, 4, 5 and 6 points are marked on sides PQ, QR, RS and PS. Now choose one point from the points from the three points on \[PQ\Rightarrow {}^{3}{{C}_{1}}\]. We need to find the number of triangles with vertices on different sides.
Now, from the figure,
The number of triangle with vertices on sides PQ, QR, RS\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}\]
Number of triangle with vertices on sides QR, SR, SP\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}\]
Number of triangle with vertices on sides RS, PS, PQ \[={}^{5}{{C}_{1}}\times {}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\]
Number of triangle with vertices on sides PS, PQ, QR \[={}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\]
\[\therefore \] Total number of triangles= number of triangle with vertices on sides PQ, QR, RS
+ Number of triangle with vertices on sides QR, SR, SP
+ Number of triangle with vertices on sides RS, PS, PQ
+ Number of triangle with vertices on sides PS, PQ, QR
\[\therefore \] Number of triangle= Number of triangle with vertices on sides
(PQ, QR, RS + QR, SR, SP + RS, PS, PQ + PS, PQ, QR)
Number of triangle\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}+{}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}+{}^{5}{{C}_{1}}\times {}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}+{}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\]
They are of the form \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
& {}^{3}{{C}_{1}}=\dfrac{3!}{\left( 3-1 \right)!1!}=\dfrac{3!}{2!};{}^{5}{{C}_{1}}=\dfrac{5!}{\left( 5-1 \right)!1!}=\dfrac{5!}{4!} \\
& {}^{4}{{C}_{1}}=\dfrac{4!}{\left( 4-1 \right)!1!}=\dfrac{4!}{3!};{}^{6}{{C}_{1}}=\dfrac{6!}{\left( 6-1 \right)!1!}=\dfrac{6!}{5!} \\
\end{align}\]
\[\therefore \] Total number of triangles \[=\left( \dfrac{3!}{2!}\times \dfrac{4!}{3!}\times \dfrac{5!}{4!} \right)+\left( \dfrac{4!}{3!}\times \dfrac{5!}{4!}\times \dfrac{6!}{5!} \right)+\left( \dfrac{5!}{4!}\times \dfrac{6!}{5!}\times \dfrac{3!}{2!} \right)+\left( \dfrac{6!}{5!}\times \dfrac{3!}{2!}\times \dfrac{4!}{3!} \right)\]
Cancel out like terms and simplify it
\[=\dfrac{5!}{2!}+\dfrac{6!}{3!}+\dfrac{6!3!}{4!2!}+\dfrac{6!4!}{5!2!}\]
\[\begin{align}
& \because 1!=1 \\
& 2!=2\times 1 \\
& 3!=3\times 2\times 1 \\
\end{align}\]
\[\begin{align}
& 4!=4\times 3\times 2\times 1 \\
& 5!=5\times 4\times 3\times 2\times 1 \\
& 6!=6\times 5\times 4\times 3\times 2\times 1 \\
& =\left( \dfrac{5\times 4\times 3\times 2\times 1}{2\times 1} \right)+\left( \dfrac{6\times 5\times 4\times 3\times 2\times 1}{3\times 2\times 1} \right)+\left( \dfrac{6\times 5\times 4!\times 3\times 2!}{4!2!} \right)+\left( \dfrac{6\times 5!\times 4\times 3\times 2!}{5!2!} \right) \\
& =\left( 5\times 4\times 3 \right)+\left( 6\times 5\times 4 \right)+\left( 6\times 5\times 3 \right)+\left( 6\times 4\times 3 \right) \\
& =60+120+90+72=342 \\
\end{align}\]
\[\therefore \] Total number of triangles = 342
Hence, the correct option is (d) 342.
Note: Take the 3 sides of the convex quadrilateral each time to bring out the number of triangles at those vertices.
& \therefore PQ={}^{3}{{C}_{1}} \\
& QR={}^{4}{{C}_{1}} \\
& RS={}^{5}{{C}_{1}} \\
& PS={}^{6}{{C}_{1}} \\
\end{align}\]
3, 4, 5 and 6 points are marked on sides PQ, QR, RS and PS. Now choose one point from the points from the three points on \[PQ\Rightarrow {}^{3}{{C}_{1}}\]. We need to find the number of triangles with vertices on different sides.
Now, from the figure,
The number of triangle with vertices on sides PQ, QR, RS\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}\]
Number of triangle with vertices on sides QR, SR, SP\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}\]
Number of triangle with vertices on sides RS, PS, PQ \[={}^{5}{{C}_{1}}\times {}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\]
Number of triangle with vertices on sides PS, PQ, QR \[={}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\]
\[\therefore \] Total number of triangles= number of triangle with vertices on sides PQ, QR, RS
+ Number of triangle with vertices on sides QR, SR, SP
+ Number of triangle with vertices on sides RS, PS, PQ
+ Number of triangle with vertices on sides PS, PQ, QR
\[\therefore \] Number of triangle= Number of triangle with vertices on sides
(PQ, QR, RS + QR, SR, SP + RS, PS, PQ + PS, PQ, QR)
Number of triangle\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}+{}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}+{}^{5}{{C}_{1}}\times {}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}+{}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\]
They are of the form \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
& {}^{3}{{C}_{1}}=\dfrac{3!}{\left( 3-1 \right)!1!}=\dfrac{3!}{2!};{}^{5}{{C}_{1}}=\dfrac{5!}{\left( 5-1 \right)!1!}=\dfrac{5!}{4!} \\
& {}^{4}{{C}_{1}}=\dfrac{4!}{\left( 4-1 \right)!1!}=\dfrac{4!}{3!};{}^{6}{{C}_{1}}=\dfrac{6!}{\left( 6-1 \right)!1!}=\dfrac{6!}{5!} \\
\end{align}\]
\[\therefore \] Total number of triangles \[=\left( \dfrac{3!}{2!}\times \dfrac{4!}{3!}\times \dfrac{5!}{4!} \right)+\left( \dfrac{4!}{3!}\times \dfrac{5!}{4!}\times \dfrac{6!}{5!} \right)+\left( \dfrac{5!}{4!}\times \dfrac{6!}{5!}\times \dfrac{3!}{2!} \right)+\left( \dfrac{6!}{5!}\times \dfrac{3!}{2!}\times \dfrac{4!}{3!} \right)\]
Cancel out like terms and simplify it
\[=\dfrac{5!}{2!}+\dfrac{6!}{3!}+\dfrac{6!3!}{4!2!}+\dfrac{6!4!}{5!2!}\]
\[\begin{align}
& \because 1!=1 \\
& 2!=2\times 1 \\
& 3!=3\times 2\times 1 \\
\end{align}\]
\[\begin{align}
& 4!=4\times 3\times 2\times 1 \\
& 5!=5\times 4\times 3\times 2\times 1 \\
& 6!=6\times 5\times 4\times 3\times 2\times 1 \\
& =\left( \dfrac{5\times 4\times 3\times 2\times 1}{2\times 1} \right)+\left( \dfrac{6\times 5\times 4\times 3\times 2\times 1}{3\times 2\times 1} \right)+\left( \dfrac{6\times 5\times 4!\times 3\times 2!}{4!2!} \right)+\left( \dfrac{6\times 5!\times 4\times 3\times 2!}{5!2!} \right) \\
& =\left( 5\times 4\times 3 \right)+\left( 6\times 5\times 4 \right)+\left( 6\times 5\times 3 \right)+\left( 6\times 4\times 3 \right) \\
& =60+120+90+72=342 \\
\end{align}\]
\[\therefore \] Total number of triangles = 342
Hence, the correct option is (d) 342.
Note: Take the 3 sides of the convex quadrilateral each time to bring out the number of triangles at those vertices.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

