
If PQRS is a convex quadrilateral with 3, 4, 5 and 6 points marked on side PQ, QR, RS and PS respectively. Then the number of triangles with vertices on different sides is:
A) 220
B) 270
C) 282
D) 342
Answer
604.2k+ views
Hint: Number of sides of a triangle is 3; consider 3 sides of the convex quadrilateral to bring out the number of triangles.
Complete step by step answer:
A convex quadrilateral is a 4 sided polygon that has interior angles that measures less than 180 degrees each.
Consider the convex quadrilateral PQRS shown in the figure.
Complete step by step answer:
A convex quadrilateral is a 4 sided polygon that has interior angles that measures less than 180 degrees each.
Consider the convex quadrilateral PQRS shown in the figure.
\[\begin{align}
& \therefore PQ={}^{3}{{C}_{1}} \\
& QR={}^{4}{{C}_{1}} \\
& RS={}^{5}{{C}_{1}} \\
& PS={}^{6}{{C}_{1}} \\
\end{align}\]
3, 4, 5 and 6 points are marked on sides PQ, QR, RS and PS. Now choose one point from the points from the three points on \[PQ\Rightarrow {}^{3}{{C}_{1}}\]. We need to find the number of triangles with vertices on different sides.
Now, from the figure,
The number of triangle with vertices on sides PQ, QR, RS\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}\]
Number of triangle with vertices on sides QR, SR, SP\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}\]
Number of triangle with vertices on sides RS, PS, PQ \[={}^{5}{{C}_{1}}\times {}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\]
Number of triangle with vertices on sides PS, PQ, QR \[={}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\]
\[\therefore \] Total number of triangles= number of triangle with vertices on sides PQ, QR, RS
+ Number of triangle with vertices on sides QR, SR, SP
+ Number of triangle with vertices on sides RS, PS, PQ
+ Number of triangle with vertices on sides PS, PQ, QR
\[\therefore \] Number of triangle= Number of triangle with vertices on sides
(PQ, QR, RS + QR, SR, SP + RS, PS, PQ + PS, PQ, QR)
Number of triangle\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}+{}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}+{}^{5}{{C}_{1}}\times {}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}+{}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\]
They are of the form \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
& {}^{3}{{C}_{1}}=\dfrac{3!}{\left( 3-1 \right)!1!}=\dfrac{3!}{2!};{}^{5}{{C}_{1}}=\dfrac{5!}{\left( 5-1 \right)!1!}=\dfrac{5!}{4!} \\
& {}^{4}{{C}_{1}}=\dfrac{4!}{\left( 4-1 \right)!1!}=\dfrac{4!}{3!};{}^{6}{{C}_{1}}=\dfrac{6!}{\left( 6-1 \right)!1!}=\dfrac{6!}{5!} \\
\end{align}\]
\[\therefore \] Total number of triangles \[=\left( \dfrac{3!}{2!}\times \dfrac{4!}{3!}\times \dfrac{5!}{4!} \right)+\left( \dfrac{4!}{3!}\times \dfrac{5!}{4!}\times \dfrac{6!}{5!} \right)+\left( \dfrac{5!}{4!}\times \dfrac{6!}{5!}\times \dfrac{3!}{2!} \right)+\left( \dfrac{6!}{5!}\times \dfrac{3!}{2!}\times \dfrac{4!}{3!} \right)\]
Cancel out like terms and simplify it
\[=\dfrac{5!}{2!}+\dfrac{6!}{3!}+\dfrac{6!3!}{4!2!}+\dfrac{6!4!}{5!2!}\]
\[\begin{align}
& \because 1!=1 \\
& 2!=2\times 1 \\
& 3!=3\times 2\times 1 \\
\end{align}\]
\[\begin{align}
& 4!=4\times 3\times 2\times 1 \\
& 5!=5\times 4\times 3\times 2\times 1 \\
& 6!=6\times 5\times 4\times 3\times 2\times 1 \\
& =\left( \dfrac{5\times 4\times 3\times 2\times 1}{2\times 1} \right)+\left( \dfrac{6\times 5\times 4\times 3\times 2\times 1}{3\times 2\times 1} \right)+\left( \dfrac{6\times 5\times 4!\times 3\times 2!}{4!2!} \right)+\left( \dfrac{6\times 5!\times 4\times 3\times 2!}{5!2!} \right) \\
& =\left( 5\times 4\times 3 \right)+\left( 6\times 5\times 4 \right)+\left( 6\times 5\times 3 \right)+\left( 6\times 4\times 3 \right) \\
& =60+120+90+72=342 \\
\end{align}\]
\[\therefore \] Total number of triangles = 342
Hence, the correct option is (d) 342.
Note: Take the 3 sides of the convex quadrilateral each time to bring out the number of triangles at those vertices.
& \therefore PQ={}^{3}{{C}_{1}} \\
& QR={}^{4}{{C}_{1}} \\
& RS={}^{5}{{C}_{1}} \\
& PS={}^{6}{{C}_{1}} \\
\end{align}\]
3, 4, 5 and 6 points are marked on sides PQ, QR, RS and PS. Now choose one point from the points from the three points on \[PQ\Rightarrow {}^{3}{{C}_{1}}\]. We need to find the number of triangles with vertices on different sides.
Now, from the figure,
The number of triangle with vertices on sides PQ, QR, RS\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}\]
Number of triangle with vertices on sides QR, SR, SP\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}\]
Number of triangle with vertices on sides RS, PS, PQ \[={}^{5}{{C}_{1}}\times {}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\]
Number of triangle with vertices on sides PS, PQ, QR \[={}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\]
\[\therefore \] Total number of triangles= number of triangle with vertices on sides PQ, QR, RS
+ Number of triangle with vertices on sides QR, SR, SP
+ Number of triangle with vertices on sides RS, PS, PQ
+ Number of triangle with vertices on sides PS, PQ, QR
\[\therefore \] Number of triangle= Number of triangle with vertices on sides
(PQ, QR, RS + QR, SR, SP + RS, PS, PQ + PS, PQ, QR)
Number of triangle\[={}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}+{}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\times {}^{5}{{C}_{1}}+{}^{5}{{C}_{1}}\times {}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}+{}^{6}{{C}_{1}}\times {}^{3}{{C}_{1}}\times {}^{4}{{C}_{1}}\]
They are of the form \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
& {}^{3}{{C}_{1}}=\dfrac{3!}{\left( 3-1 \right)!1!}=\dfrac{3!}{2!};{}^{5}{{C}_{1}}=\dfrac{5!}{\left( 5-1 \right)!1!}=\dfrac{5!}{4!} \\
& {}^{4}{{C}_{1}}=\dfrac{4!}{\left( 4-1 \right)!1!}=\dfrac{4!}{3!};{}^{6}{{C}_{1}}=\dfrac{6!}{\left( 6-1 \right)!1!}=\dfrac{6!}{5!} \\
\end{align}\]
\[\therefore \] Total number of triangles \[=\left( \dfrac{3!}{2!}\times \dfrac{4!}{3!}\times \dfrac{5!}{4!} \right)+\left( \dfrac{4!}{3!}\times \dfrac{5!}{4!}\times \dfrac{6!}{5!} \right)+\left( \dfrac{5!}{4!}\times \dfrac{6!}{5!}\times \dfrac{3!}{2!} \right)+\left( \dfrac{6!}{5!}\times \dfrac{3!}{2!}\times \dfrac{4!}{3!} \right)\]
Cancel out like terms and simplify it
\[=\dfrac{5!}{2!}+\dfrac{6!}{3!}+\dfrac{6!3!}{4!2!}+\dfrac{6!4!}{5!2!}\]
\[\begin{align}
& \because 1!=1 \\
& 2!=2\times 1 \\
& 3!=3\times 2\times 1 \\
\end{align}\]
\[\begin{align}
& 4!=4\times 3\times 2\times 1 \\
& 5!=5\times 4\times 3\times 2\times 1 \\
& 6!=6\times 5\times 4\times 3\times 2\times 1 \\
& =\left( \dfrac{5\times 4\times 3\times 2\times 1}{2\times 1} \right)+\left( \dfrac{6\times 5\times 4\times 3\times 2\times 1}{3\times 2\times 1} \right)+\left( \dfrac{6\times 5\times 4!\times 3\times 2!}{4!2!} \right)+\left( \dfrac{6\times 5!\times 4\times 3\times 2!}{5!2!} \right) \\
& =\left( 5\times 4\times 3 \right)+\left( 6\times 5\times 4 \right)+\left( 6\times 5\times 3 \right)+\left( 6\times 4\times 3 \right) \\
& =60+120+90+72=342 \\
\end{align}\]
\[\therefore \] Total number of triangles = 342
Hence, the correct option is (d) 342.
Note: Take the 3 sides of the convex quadrilateral each time to bring out the number of triangles at those vertices.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

