
If P,Q,R are collinear points such that, $P(7,7)$, $Q(3,4)$ and $PR=10$, find $R$.
Answer
577.8k+ views
Hint: Assume the co-ordinates of $R$ as $(x,y)$ and as it is given that $P,Q,R$ are collinear points. Apply distance condition of collinear points which is if $P,Q,R$ are three collinear points then they must satisfy $PQ+QR=PR$ and get one equation. Apply distance formula which states that if $A({{x}_{1}},{{y}_{1}})$ and $B({{x}_{2}},{{y}_{2}})$ are two points then the distance $AB=\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}}$ and get the second equation by using $PR=10$ , solve these two equations and get the co-ordinates of $R$.
Complete step-by-step solution:
It is given in the question that $P, Q, R$ are collinear points.
Collinear means lying on the same line which means that $P, Q, R$ lies on the same straight line.
Let us suppose that the co-ordinates of $R$ is $(x,y)$. Now, we have $P(7,7)$, $Q(3,4)$, $R(x,y)$ and also $PR=10$.
We have to use distance formula in order to find $PQ,QR,PR$. So, according to distance formula if $A({{x}_{1}},{{y}_{1}})$ and $B({{x}_{2}},{{y}_{2}})$ then $AB=\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}}$.
Now, $P,Q,R$ are three collinear points then they must satisfy,
$\therefore PQ+QR=PR$
Using distance formula, we get
$\Rightarrow \sqrt{{{(7-3)}^{2}}+{{(7-4)}^{2}}}+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
$\Rightarrow \sqrt{16+9}+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
$\Rightarrow 5+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
\[\Rightarrow \sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=5\]
Squaring both sides, we get
$\Rightarrow {{(3-x)}^{2}}+{{(4-y)}^{2}}=25$
$\Rightarrow {{x}^{2}}+{{y}^{2}}-6x-8y+25=25$
Cancelling 25 from both sides, we get
$\Rightarrow {{x}^{2}}+{{y}^{2}}=6x+8y...................(1)$
Also, it is given that $PR=10$, using this we get
$\therefore PR=10$
\[\Rightarrow \sqrt{{{(7-x)}^{2}}+{{(7-y)}^{2}}}=10\]
Squaring both sides, we get
\[\Rightarrow {{(7-x)}^{2}}+{{(7-y)}^{2}}=100\]
$\Rightarrow {{x}^{2}}+{{y}^{2}}-14x-14y+98=100$
Putting the value of ${{x}^{2}}+{{y}^{2}}$ from equation (1), we get
$\Rightarrow 6x+8y-14x-14y=100-98$
$\Rightarrow -8x-6y=2$
Now, expressing $y$ in terms of $x$, we get
$\Rightarrow y=\dfrac{-(2+8x)}{6}=\dfrac{-(1+4x)}{3}..................(2)$
Putting the value of $y$ from equation (2) in equation (1), we get
$\Rightarrow {{x}^{2}}+{{\left( \dfrac{-(1+4x)}{3} \right)}^{2}}=6x+\dfrac{-(1+4x)}{3}\times 8$
$\Rightarrow \dfrac{9{{x}^{2}}+1+8x+16{{x}^{2}}}{9}=\dfrac{18x-8-32x}{3}$
$\Rightarrow 25{{x}^{2}}+8x+1=3(-14x-8)$
$\Rightarrow 25{{x}^{2}}+8x+1+42x+24=0$
$\Rightarrow 25{{x}^{2}}+50x+25=0$
$\Rightarrow 25({{x}^{2}}+2x+1)=0$
$\Rightarrow {{(x+1)}^{2}}=0$
$\Rightarrow x+1=0\Rightarrow x=-1$
Now, putting the value of $x$ in equation (2), we get
$\Rightarrow y=\dfrac{-(1+4\times -1)}{3}$
$\Rightarrow y=\dfrac{3}{3}=1$
So, $x=-1$ and $y=1$.
Hence the co-ordinates of $R$ is $(-1,1)$.
Note: This question is simple and there are many other alternative ways to solve it but the tricky part is to choose which method to solve the question. There are three different conditions of collinearity as there is slope condition, distance condition, and area condition. As in the other two conditions distances are not involved, only the distance condition involves the use of distances. In the question, distance is mentioned so we choose that method to solve it. Hence, students should carefully read the question and choose which method is suitable to solve the question according to the values given.
Complete step-by-step solution:
It is given in the question that $P, Q, R$ are collinear points.
Collinear means lying on the same line which means that $P, Q, R$ lies on the same straight line.
Let us suppose that the co-ordinates of $R$ is $(x,y)$. Now, we have $P(7,7)$, $Q(3,4)$, $R(x,y)$ and also $PR=10$.
We have to use distance formula in order to find $PQ,QR,PR$. So, according to distance formula if $A({{x}_{1}},{{y}_{1}})$ and $B({{x}_{2}},{{y}_{2}})$ then $AB=\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}}$.
Now, $P,Q,R$ are three collinear points then they must satisfy,
$\therefore PQ+QR=PR$
Using distance formula, we get
$\Rightarrow \sqrt{{{(7-3)}^{2}}+{{(7-4)}^{2}}}+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
$\Rightarrow \sqrt{16+9}+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
$\Rightarrow 5+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
\[\Rightarrow \sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=5\]
Squaring both sides, we get
$\Rightarrow {{(3-x)}^{2}}+{{(4-y)}^{2}}=25$
$\Rightarrow {{x}^{2}}+{{y}^{2}}-6x-8y+25=25$
Cancelling 25 from both sides, we get
$\Rightarrow {{x}^{2}}+{{y}^{2}}=6x+8y...................(1)$
Also, it is given that $PR=10$, using this we get
$\therefore PR=10$
\[\Rightarrow \sqrt{{{(7-x)}^{2}}+{{(7-y)}^{2}}}=10\]
Squaring both sides, we get
\[\Rightarrow {{(7-x)}^{2}}+{{(7-y)}^{2}}=100\]
$\Rightarrow {{x}^{2}}+{{y}^{2}}-14x-14y+98=100$
Putting the value of ${{x}^{2}}+{{y}^{2}}$ from equation (1), we get
$\Rightarrow 6x+8y-14x-14y=100-98$
$\Rightarrow -8x-6y=2$
Now, expressing $y$ in terms of $x$, we get
$\Rightarrow y=\dfrac{-(2+8x)}{6}=\dfrac{-(1+4x)}{3}..................(2)$
Putting the value of $y$ from equation (2) in equation (1), we get
$\Rightarrow {{x}^{2}}+{{\left( \dfrac{-(1+4x)}{3} \right)}^{2}}=6x+\dfrac{-(1+4x)}{3}\times 8$
$\Rightarrow \dfrac{9{{x}^{2}}+1+8x+16{{x}^{2}}}{9}=\dfrac{18x-8-32x}{3}$
$\Rightarrow 25{{x}^{2}}+8x+1=3(-14x-8)$
$\Rightarrow 25{{x}^{2}}+8x+1+42x+24=0$
$\Rightarrow 25{{x}^{2}}+50x+25=0$
$\Rightarrow 25({{x}^{2}}+2x+1)=0$
$\Rightarrow {{(x+1)}^{2}}=0$
$\Rightarrow x+1=0\Rightarrow x=-1$
Now, putting the value of $x$ in equation (2), we get
$\Rightarrow y=\dfrac{-(1+4\times -1)}{3}$
$\Rightarrow y=\dfrac{3}{3}=1$
So, $x=-1$ and $y=1$.
Hence the co-ordinates of $R$ is $(-1,1)$.
Note: This question is simple and there are many other alternative ways to solve it but the tricky part is to choose which method to solve the question. There are three different conditions of collinearity as there is slope condition, distance condition, and area condition. As in the other two conditions distances are not involved, only the distance condition involves the use of distances. In the question, distance is mentioned so we choose that method to solve it. Hence, students should carefully read the question and choose which method is suitable to solve the question according to the values given.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

