
If P,Q,R are collinear points such that, $P(7,7)$, $Q(3,4)$ and $PR=10$, find $R$.
Answer
512.7k+ views
Hint: Assume the co-ordinates of $R$ as $(x,y)$ and as it is given that $P,Q,R$ are collinear points. Apply distance condition of collinear points which is if $P,Q,R$ are three collinear points then they must satisfy $PQ+QR=PR$ and get one equation. Apply distance formula which states that if $A({{x}_{1}},{{y}_{1}})$ and $B({{x}_{2}},{{y}_{2}})$ are two points then the distance $AB=\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}}$ and get the second equation by using $PR=10$ , solve these two equations and get the co-ordinates of $R$.
Complete step-by-step solution:
It is given in the question that $P, Q, R$ are collinear points.
Collinear means lying on the same line which means that $P, Q, R$ lies on the same straight line.
Let us suppose that the co-ordinates of $R$ is $(x,y)$. Now, we have $P(7,7)$, $Q(3,4)$, $R(x,y)$ and also $PR=10$.
We have to use distance formula in order to find $PQ,QR,PR$. So, according to distance formula if $A({{x}_{1}},{{y}_{1}})$ and $B({{x}_{2}},{{y}_{2}})$ then $AB=\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}}$.
Now, $P,Q,R$ are three collinear points then they must satisfy,
$\therefore PQ+QR=PR$
Using distance formula, we get
$\Rightarrow \sqrt{{{(7-3)}^{2}}+{{(7-4)}^{2}}}+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
$\Rightarrow \sqrt{16+9}+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
$\Rightarrow 5+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
\[\Rightarrow \sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=5\]
Squaring both sides, we get
$\Rightarrow {{(3-x)}^{2}}+{{(4-y)}^{2}}=25$
$\Rightarrow {{x}^{2}}+{{y}^{2}}-6x-8y+25=25$
Cancelling 25 from both sides, we get
$\Rightarrow {{x}^{2}}+{{y}^{2}}=6x+8y...................(1)$
Also, it is given that $PR=10$, using this we get
$\therefore PR=10$
\[\Rightarrow \sqrt{{{(7-x)}^{2}}+{{(7-y)}^{2}}}=10\]
Squaring both sides, we get
\[\Rightarrow {{(7-x)}^{2}}+{{(7-y)}^{2}}=100\]
$\Rightarrow {{x}^{2}}+{{y}^{2}}-14x-14y+98=100$
Putting the value of ${{x}^{2}}+{{y}^{2}}$ from equation (1), we get
$\Rightarrow 6x+8y-14x-14y=100-98$
$\Rightarrow -8x-6y=2$
Now, expressing $y$ in terms of $x$, we get
$\Rightarrow y=\dfrac{-(2+8x)}{6}=\dfrac{-(1+4x)}{3}..................(2)$
Putting the value of $y$ from equation (2) in equation (1), we get
$\Rightarrow {{x}^{2}}+{{\left( \dfrac{-(1+4x)}{3} \right)}^{2}}=6x+\dfrac{-(1+4x)}{3}\times 8$
$\Rightarrow \dfrac{9{{x}^{2}}+1+8x+16{{x}^{2}}}{9}=\dfrac{18x-8-32x}{3}$
$\Rightarrow 25{{x}^{2}}+8x+1=3(-14x-8)$
$\Rightarrow 25{{x}^{2}}+8x+1+42x+24=0$
$\Rightarrow 25{{x}^{2}}+50x+25=0$
$\Rightarrow 25({{x}^{2}}+2x+1)=0$
$\Rightarrow {{(x+1)}^{2}}=0$
$\Rightarrow x+1=0\Rightarrow x=-1$
Now, putting the value of $x$ in equation (2), we get
$\Rightarrow y=\dfrac{-(1+4\times -1)}{3}$
$\Rightarrow y=\dfrac{3}{3}=1$
So, $x=-1$ and $y=1$.
Hence the co-ordinates of $R$ is $(-1,1)$.
Note: This question is simple and there are many other alternative ways to solve it but the tricky part is to choose which method to solve the question. There are three different conditions of collinearity as there is slope condition, distance condition, and area condition. As in the other two conditions distances are not involved, only the distance condition involves the use of distances. In the question, distance is mentioned so we choose that method to solve it. Hence, students should carefully read the question and choose which method is suitable to solve the question according to the values given.
Complete step-by-step solution:
It is given in the question that $P, Q, R$ are collinear points.
Collinear means lying on the same line which means that $P, Q, R$ lies on the same straight line.
Let us suppose that the co-ordinates of $R$ is $(x,y)$. Now, we have $P(7,7)$, $Q(3,4)$, $R(x,y)$ and also $PR=10$.

We have to use distance formula in order to find $PQ,QR,PR$. So, according to distance formula if $A({{x}_{1}},{{y}_{1}})$ and $B({{x}_{2}},{{y}_{2}})$ then $AB=\sqrt{{{({{x}_{2}}-{{x}_{1}})}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}}$.
Now, $P,Q,R$ are three collinear points then they must satisfy,
$\therefore PQ+QR=PR$
Using distance formula, we get
$\Rightarrow \sqrt{{{(7-3)}^{2}}+{{(7-4)}^{2}}}+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
$\Rightarrow \sqrt{16+9}+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
$\Rightarrow 5+\sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=10$
\[\Rightarrow \sqrt{{{(3-x)}^{2}}+{{(4-y)}^{2}}}=5\]
Squaring both sides, we get
$\Rightarrow {{(3-x)}^{2}}+{{(4-y)}^{2}}=25$
$\Rightarrow {{x}^{2}}+{{y}^{2}}-6x-8y+25=25$
Cancelling 25 from both sides, we get
$\Rightarrow {{x}^{2}}+{{y}^{2}}=6x+8y...................(1)$
Also, it is given that $PR=10$, using this we get
$\therefore PR=10$
\[\Rightarrow \sqrt{{{(7-x)}^{2}}+{{(7-y)}^{2}}}=10\]
Squaring both sides, we get
\[\Rightarrow {{(7-x)}^{2}}+{{(7-y)}^{2}}=100\]
$\Rightarrow {{x}^{2}}+{{y}^{2}}-14x-14y+98=100$
Putting the value of ${{x}^{2}}+{{y}^{2}}$ from equation (1), we get
$\Rightarrow 6x+8y-14x-14y=100-98$
$\Rightarrow -8x-6y=2$
Now, expressing $y$ in terms of $x$, we get
$\Rightarrow y=\dfrac{-(2+8x)}{6}=\dfrac{-(1+4x)}{3}..................(2)$
Putting the value of $y$ from equation (2) in equation (1), we get
$\Rightarrow {{x}^{2}}+{{\left( \dfrac{-(1+4x)}{3} \right)}^{2}}=6x+\dfrac{-(1+4x)}{3}\times 8$
$\Rightarrow \dfrac{9{{x}^{2}}+1+8x+16{{x}^{2}}}{9}=\dfrac{18x-8-32x}{3}$
$\Rightarrow 25{{x}^{2}}+8x+1=3(-14x-8)$
$\Rightarrow 25{{x}^{2}}+8x+1+42x+24=0$
$\Rightarrow 25{{x}^{2}}+50x+25=0$
$\Rightarrow 25({{x}^{2}}+2x+1)=0$
$\Rightarrow {{(x+1)}^{2}}=0$
$\Rightarrow x+1=0\Rightarrow x=-1$
Now, putting the value of $x$ in equation (2), we get
$\Rightarrow y=\dfrac{-(1+4\times -1)}{3}$
$\Rightarrow y=\dfrac{3}{3}=1$
So, $x=-1$ and $y=1$.
Hence the co-ordinates of $R$ is $(-1,1)$.
Note: This question is simple and there are many other alternative ways to solve it but the tricky part is to choose which method to solve the question. There are three different conditions of collinearity as there is slope condition, distance condition, and area condition. As in the other two conditions distances are not involved, only the distance condition involves the use of distances. In the question, distance is mentioned so we choose that method to solve it. Hence, students should carefully read the question and choose which method is suitable to solve the question according to the values given.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE
