
If points A (5, 2), B (3, 4) and C (x, y) are collinear and AB = BC then find (x, y).
Answer
602.1k+ views
Hint: Three or more points are said to be collinear if they lie on a straight line.If three points are collinear it means the area formed by the line joining three points is zero, and as AB=BC you would get an equation. And by using this equation we can find the value of x and y.
Complete step-by-step answer:
In this figure, A, B, C are collinear points .
Given, the points A (5,2), B (3,4) and C (x, y) are collinear i.e., A, B, and C are on same line and AB=BC
∴ B is the midpoint of AC.
We know that according to Midpoint formula:
If the coordinates of A and B are ${\text{(}}{{\text{x}}_{\text{1}}}{\text{, }}{{\text{y}}_{\text{1}}}{\text{)}}$ and ${\text{(}}{{\text{x}}_{\text{2}}}{\text{, }}{{\text{y}}_{\text{2}}}{\text{)}}$respectively, then the midpoint M of AB is given by the following formula (Midpoint Formula).
${\text{M = (}}\dfrac{{{{\text{x}}_{\text{1}}}{\text{ + }}{{\text{x}}_{\text{2}}}}}{{\text{2}}}{\text{,}}\dfrac{{{{\text{y}}_{\text{1}}}{\text{ + }}{{\text{y}}_{\text{2}}}}}{{\text{2}}}{\text{)}}$
So we can write:
${\text{(}}\dfrac{{{\text{x + 5}}}}{{\text{2}}}{\text{,}}\dfrac{{{\text{y + 5}}}}{{\text{2}}}{\text{) = (3,4)}}$
On equating the coordinates on both sides, we get:
$ \Rightarrow $$\dfrac{{{\text{x + 5}}}}{{\text{2}}}{\text{ = 3 and }}\dfrac{{{\text{y + 2}}}}{{\text{2}}}{\text{ = 4}}$
$ \Rightarrow $${\text{x + 5 = 6 and y + 2 = 8}}$
$ \Rightarrow $${\text{x = 1 and y = 6}}$
Hence, the value of x and y are 1 and 6 respectively.
Note: In this question three points are collinear so the section formula will give the answer. So you should remember the sectional formula to solve this type of question. Midpoint formula itself comes from the sectional formula if the ratio is 1:1. In case these three points are non-collinear, then we will get a closed bounded by three line segments . This closed figure is called a triangle. In such a case, you have to use a formula for finding the area of the triangle to solve the problem.
Complete step-by-step answer:
In this figure, A, B, C are collinear points .
Given, the points A (5,2), B (3,4) and C (x, y) are collinear i.e., A, B, and C are on same line and AB=BC
∴ B is the midpoint of AC.
We know that according to Midpoint formula:
If the coordinates of A and B are ${\text{(}}{{\text{x}}_{\text{1}}}{\text{, }}{{\text{y}}_{\text{1}}}{\text{)}}$ and ${\text{(}}{{\text{x}}_{\text{2}}}{\text{, }}{{\text{y}}_{\text{2}}}{\text{)}}$respectively, then the midpoint M of AB is given by the following formula (Midpoint Formula).
${\text{M = (}}\dfrac{{{{\text{x}}_{\text{1}}}{\text{ + }}{{\text{x}}_{\text{2}}}}}{{\text{2}}}{\text{,}}\dfrac{{{{\text{y}}_{\text{1}}}{\text{ + }}{{\text{y}}_{\text{2}}}}}{{\text{2}}}{\text{)}}$
So we can write:
${\text{(}}\dfrac{{{\text{x + 5}}}}{{\text{2}}}{\text{,}}\dfrac{{{\text{y + 5}}}}{{\text{2}}}{\text{) = (3,4)}}$
On equating the coordinates on both sides, we get:
$ \Rightarrow $$\dfrac{{{\text{x + 5}}}}{{\text{2}}}{\text{ = 3 and }}\dfrac{{{\text{y + 2}}}}{{\text{2}}}{\text{ = 4}}$
$ \Rightarrow $${\text{x + 5 = 6 and y + 2 = 8}}$
$ \Rightarrow $${\text{x = 1 and y = 6}}$
Hence, the value of x and y are 1 and 6 respectively.
Note: In this question three points are collinear so the section formula will give the answer. So you should remember the sectional formula to solve this type of question. Midpoint formula itself comes from the sectional formula if the ratio is 1:1. In case these three points are non-collinear, then we will get a closed bounded by three line segments . This closed figure is called a triangle. In such a case, you have to use a formula for finding the area of the triangle to solve the problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

