
If ${{P}_{n}}$ denotes the product of the binomial coefficients in the expansion of ${{\left( 1+x \right)}^{n}}$ ,then $\dfrac{{{P}_{n+1}}}{{{P}_{n}}}$ equals
(a) $\dfrac{{{\left( n+1 \right)}^{n}}}{n!}$
(b) $\dfrac{{{n}^{n}}}{n!}$
(c) $\dfrac{{{\left( n+1 \right)}^{n}}}{\left( n+1 \right)!}$
(d) $\dfrac{{{\left( n+1 \right)}^{n+1}}}{\left( n+1 \right)!}$
Answer
580.2k+ views
Hint: In order to solve this problem, we need to find the coefficients of the binomial coefficients of the expansion.
The binomial theorem states that,
${{\left( a+b \right)}^{n}}=\left( {}^{n}{{C}_{0}} \right){{a}^{n}}+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{2}} \right){{a}^{n-2}}{{b}^{2}}+......+\left( {}^{n}{{C}_{n-1}} \right)a{{b}^{n-1}}+\left( {}^{n}{{C}_{n}} \right){{b}^{n}}$, where ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . We can see that the irrespective of the expression the coefficients remain the same.
Complete step-by-step answer:
We are given the expression and we need to find the binomial coefficients of the expansion.
The binomial theorem states that,
${{\left( a+b \right)}^{n}}=\left( {}^{n}{{C}_{0}} \right){{a}^{n}}+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{2}} \right){{a}^{n-2}}{{b}^{2}}+......+\left( {}^{n}{{C}_{n-1}} \right)a{{b}^{n-1}}+\left( {}^{n}{{C}_{n}} \right){{b}^{n}}$
Where ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
We are given that the product of the coefficients of the binomial of ${{\left( 1+x \right)}^{n}}$ be ${{P}_{n}}$ .
We can see that irrespective of the expression the coefficients remain the same.
Therefore, ${{P}_{n}}=\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)......\left( {}^{n}{{C}_{n}} \right).................(i)$
Therefore, the term ${{P}_{n+1}}=\left( {}^{n+1}{{C}_{0}} \right)\left( {}^{n+1}{{C}_{1}} \right)\left( {}^{n+2}{{C}_{2}} \right)......\left( {}^{n+1}{{C}_{n+1}} \right).............................(ii)$ .
Solving equation (i) we get,
$\begin{align}
& {{P}_{n}}=\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)......\left( {}^{n}{{C}_{n}} \right) \\
& =\left( \dfrac{n!}{n!} \right)\left( \dfrac{n!}{\left( n-1 \right)!} \right)\left( \dfrac{n!}{2\left( n-2 \right)!} \right)......\left( \dfrac{n!}{n!} \right) \\
& =1\times \left( \dfrac{n}{1!} \right)\times \left( \dfrac{n\left( n-1 \right)}{2!} \right)\times \left( \dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!} \right).........\left( \dfrac{n!}{n!} \right)......................(iii)
\end{align}$
We can write the value ${{P}_{n+1}}$ just by replacing (n) by (n+1).
Therefore,
\[{{P}_{n+1}}=\left( \dfrac{n+1}{1!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)}{2!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)}{3!} \right).........\left( \dfrac{\left( n+1 \right)!}{\left( n+1 \right)!} \right)......................(iv)\]
Dividing the equation (iv) by (iii), we get,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{\left( \dfrac{n+1}{1!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)}{2!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)}{3!} \right).........\left( \dfrac{\left( n+1 \right)!}{\left( n+1 \right)!} \right)}{1\times \left( \dfrac{n}{1!} \right)\times \left( \dfrac{n\left( n-1 \right)}{2!} \right)\times \left( \dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!} \right).........\left( \dfrac{n!}{n!} \right)}$
As we can see that the factorial in the denominators gets cancelled except the last terms
Therefore, by solving we get,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{\dfrac{\left( n+1 \right)\left( n+1 \right)\left( n \right)\left( n+1 \right)\left( n \right)\left( n-1 \right).....\left( n+1 \right)!}{\left( n+1 \right)!}}{\left( n \right)\left( n \right)\left( n-1 \right)\left( n \right)\left( n-1 \right)\left( n-2 \right).....\left( n! \right)}$
There is (n+1) terms (n+1) times till the end in the numerator, whereas there are n terms in the denominator n times.
Similarly, there is one n less than the number of terms that is (n+1) times. Therefore, there are n terms n times in the numerator.
So we can show that with the same analogy that (n-1) terms are repeated (n-1) terms.
In the same way in the denominator, there are (n-1) terms repeated (n-1) times and so on.
Hence, the expression becomes,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{{{\left( n+1 \right)}^{n+1}}{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}......1}{{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}{{\left( n-2 \right)}^{n-2}}......1\left( n+1 \right)!}$
Solving this further we get,
$\begin{align}
& \dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{{{\left( n+1 \right)}^{n+1}}{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}......1}{{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}{{\left( n-2 \right)}^{n-2}}......1\left( n+1 \right)!} \\
& =\dfrac{{{\left( n+1 \right)}^{n+1}}}{\left( n+1 \right)!} \\
& =\dfrac{{{\left( n+1 \right)}^{n}}}{n!}
\end{align}$
Hence, the correct option is (a).
Note: We need to understand the analogy of (n+1) appearing (n+1) times and (n) appearing (n) times and so on. There is a similar case in the denominator starting from (n) repeating (n) times, followed by (n-1) appearing (n-1) times and so on. This makes the expression simplified. Also initially while cancelling the factorials in the denominator there is one term in the upper half which does not get cancelled.
The binomial theorem states that,
${{\left( a+b \right)}^{n}}=\left( {}^{n}{{C}_{0}} \right){{a}^{n}}+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{2}} \right){{a}^{n-2}}{{b}^{2}}+......+\left( {}^{n}{{C}_{n-1}} \right)a{{b}^{n-1}}+\left( {}^{n}{{C}_{n}} \right){{b}^{n}}$, where ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . We can see that the irrespective of the expression the coefficients remain the same.
Complete step-by-step answer:
We are given the expression and we need to find the binomial coefficients of the expansion.
The binomial theorem states that,
${{\left( a+b \right)}^{n}}=\left( {}^{n}{{C}_{0}} \right){{a}^{n}}+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{2}} \right){{a}^{n-2}}{{b}^{2}}+......+\left( {}^{n}{{C}_{n-1}} \right)a{{b}^{n-1}}+\left( {}^{n}{{C}_{n}} \right){{b}^{n}}$
Where ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
We are given that the product of the coefficients of the binomial of ${{\left( 1+x \right)}^{n}}$ be ${{P}_{n}}$ .
We can see that irrespective of the expression the coefficients remain the same.
Therefore, ${{P}_{n}}=\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)......\left( {}^{n}{{C}_{n}} \right).................(i)$
Therefore, the term ${{P}_{n+1}}=\left( {}^{n+1}{{C}_{0}} \right)\left( {}^{n+1}{{C}_{1}} \right)\left( {}^{n+2}{{C}_{2}} \right)......\left( {}^{n+1}{{C}_{n+1}} \right).............................(ii)$ .
Solving equation (i) we get,
$\begin{align}
& {{P}_{n}}=\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)......\left( {}^{n}{{C}_{n}} \right) \\
& =\left( \dfrac{n!}{n!} \right)\left( \dfrac{n!}{\left( n-1 \right)!} \right)\left( \dfrac{n!}{2\left( n-2 \right)!} \right)......\left( \dfrac{n!}{n!} \right) \\
& =1\times \left( \dfrac{n}{1!} \right)\times \left( \dfrac{n\left( n-1 \right)}{2!} \right)\times \left( \dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!} \right).........\left( \dfrac{n!}{n!} \right)......................(iii)
\end{align}$
We can write the value ${{P}_{n+1}}$ just by replacing (n) by (n+1).
Therefore,
\[{{P}_{n+1}}=\left( \dfrac{n+1}{1!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)}{2!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)}{3!} \right).........\left( \dfrac{\left( n+1 \right)!}{\left( n+1 \right)!} \right)......................(iv)\]
Dividing the equation (iv) by (iii), we get,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{\left( \dfrac{n+1}{1!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)}{2!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)}{3!} \right).........\left( \dfrac{\left( n+1 \right)!}{\left( n+1 \right)!} \right)}{1\times \left( \dfrac{n}{1!} \right)\times \left( \dfrac{n\left( n-1 \right)}{2!} \right)\times \left( \dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!} \right).........\left( \dfrac{n!}{n!} \right)}$
As we can see that the factorial in the denominators gets cancelled except the last terms
Therefore, by solving we get,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{\dfrac{\left( n+1 \right)\left( n+1 \right)\left( n \right)\left( n+1 \right)\left( n \right)\left( n-1 \right).....\left( n+1 \right)!}{\left( n+1 \right)!}}{\left( n \right)\left( n \right)\left( n-1 \right)\left( n \right)\left( n-1 \right)\left( n-2 \right).....\left( n! \right)}$
There is (n+1) terms (n+1) times till the end in the numerator, whereas there are n terms in the denominator n times.
Similarly, there is one n less than the number of terms that is (n+1) times. Therefore, there are n terms n times in the numerator.
So we can show that with the same analogy that (n-1) terms are repeated (n-1) terms.
In the same way in the denominator, there are (n-1) terms repeated (n-1) times and so on.
Hence, the expression becomes,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{{{\left( n+1 \right)}^{n+1}}{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}......1}{{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}{{\left( n-2 \right)}^{n-2}}......1\left( n+1 \right)!}$
Solving this further we get,
$\begin{align}
& \dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{{{\left( n+1 \right)}^{n+1}}{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}......1}{{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}{{\left( n-2 \right)}^{n-2}}......1\left( n+1 \right)!} \\
& =\dfrac{{{\left( n+1 \right)}^{n+1}}}{\left( n+1 \right)!} \\
& =\dfrac{{{\left( n+1 \right)}^{n}}}{n!}
\end{align}$
Hence, the correct option is (a).
Note: We need to understand the analogy of (n+1) appearing (n+1) times and (n) appearing (n) times and so on. There is a similar case in the denominator starting from (n) repeating (n) times, followed by (n-1) appearing (n-1) times and so on. This makes the expression simplified. Also initially while cancelling the factorials in the denominator there is one term in the upper half which does not get cancelled.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

