
If ${{P}_{n}}$ denotes the product of the binomial coefficients in the expansion of ${{\left( 1+x \right)}^{n}}$ ,then $\dfrac{{{P}_{n+1}}}{{{P}_{n}}}$ equals
(a) $\dfrac{{{\left( n+1 \right)}^{n}}}{n!}$
(b) $\dfrac{{{n}^{n}}}{n!}$
(c) $\dfrac{{{\left( n+1 \right)}^{n}}}{\left( n+1 \right)!}$
(d) $\dfrac{{{\left( n+1 \right)}^{n+1}}}{\left( n+1 \right)!}$
Answer
594k+ views
Hint: In order to solve this problem, we need to find the coefficients of the binomial coefficients of the expansion.
The binomial theorem states that,
${{\left( a+b \right)}^{n}}=\left( {}^{n}{{C}_{0}} \right){{a}^{n}}+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{2}} \right){{a}^{n-2}}{{b}^{2}}+......+\left( {}^{n}{{C}_{n-1}} \right)a{{b}^{n-1}}+\left( {}^{n}{{C}_{n}} \right){{b}^{n}}$, where ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . We can see that the irrespective of the expression the coefficients remain the same.
Complete step-by-step answer:
We are given the expression and we need to find the binomial coefficients of the expansion.
The binomial theorem states that,
${{\left( a+b \right)}^{n}}=\left( {}^{n}{{C}_{0}} \right){{a}^{n}}+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{2}} \right){{a}^{n-2}}{{b}^{2}}+......+\left( {}^{n}{{C}_{n-1}} \right)a{{b}^{n-1}}+\left( {}^{n}{{C}_{n}} \right){{b}^{n}}$
Where ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
We are given that the product of the coefficients of the binomial of ${{\left( 1+x \right)}^{n}}$ be ${{P}_{n}}$ .
We can see that irrespective of the expression the coefficients remain the same.
Therefore, ${{P}_{n}}=\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)......\left( {}^{n}{{C}_{n}} \right).................(i)$
Therefore, the term ${{P}_{n+1}}=\left( {}^{n+1}{{C}_{0}} \right)\left( {}^{n+1}{{C}_{1}} \right)\left( {}^{n+2}{{C}_{2}} \right)......\left( {}^{n+1}{{C}_{n+1}} \right).............................(ii)$ .
Solving equation (i) we get,
$\begin{align}
& {{P}_{n}}=\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)......\left( {}^{n}{{C}_{n}} \right) \\
& =\left( \dfrac{n!}{n!} \right)\left( \dfrac{n!}{\left( n-1 \right)!} \right)\left( \dfrac{n!}{2\left( n-2 \right)!} \right)......\left( \dfrac{n!}{n!} \right) \\
& =1\times \left( \dfrac{n}{1!} \right)\times \left( \dfrac{n\left( n-1 \right)}{2!} \right)\times \left( \dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!} \right).........\left( \dfrac{n!}{n!} \right)......................(iii)
\end{align}$
We can write the value ${{P}_{n+1}}$ just by replacing (n) by (n+1).
Therefore,
\[{{P}_{n+1}}=\left( \dfrac{n+1}{1!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)}{2!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)}{3!} \right).........\left( \dfrac{\left( n+1 \right)!}{\left( n+1 \right)!} \right)......................(iv)\]
Dividing the equation (iv) by (iii), we get,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{\left( \dfrac{n+1}{1!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)}{2!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)}{3!} \right).........\left( \dfrac{\left( n+1 \right)!}{\left( n+1 \right)!} \right)}{1\times \left( \dfrac{n}{1!} \right)\times \left( \dfrac{n\left( n-1 \right)}{2!} \right)\times \left( \dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!} \right).........\left( \dfrac{n!}{n!} \right)}$
As we can see that the factorial in the denominators gets cancelled except the last terms
Therefore, by solving we get,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{\dfrac{\left( n+1 \right)\left( n+1 \right)\left( n \right)\left( n+1 \right)\left( n \right)\left( n-1 \right).....\left( n+1 \right)!}{\left( n+1 \right)!}}{\left( n \right)\left( n \right)\left( n-1 \right)\left( n \right)\left( n-1 \right)\left( n-2 \right).....\left( n! \right)}$
There is (n+1) terms (n+1) times till the end in the numerator, whereas there are n terms in the denominator n times.
Similarly, there is one n less than the number of terms that is (n+1) times. Therefore, there are n terms n times in the numerator.
So we can show that with the same analogy that (n-1) terms are repeated (n-1) terms.
In the same way in the denominator, there are (n-1) terms repeated (n-1) times and so on.
Hence, the expression becomes,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{{{\left( n+1 \right)}^{n+1}}{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}......1}{{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}{{\left( n-2 \right)}^{n-2}}......1\left( n+1 \right)!}$
Solving this further we get,
$\begin{align}
& \dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{{{\left( n+1 \right)}^{n+1}}{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}......1}{{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}{{\left( n-2 \right)}^{n-2}}......1\left( n+1 \right)!} \\
& =\dfrac{{{\left( n+1 \right)}^{n+1}}}{\left( n+1 \right)!} \\
& =\dfrac{{{\left( n+1 \right)}^{n}}}{n!}
\end{align}$
Hence, the correct option is (a).
Note: We need to understand the analogy of (n+1) appearing (n+1) times and (n) appearing (n) times and so on. There is a similar case in the denominator starting from (n) repeating (n) times, followed by (n-1) appearing (n-1) times and so on. This makes the expression simplified. Also initially while cancelling the factorials in the denominator there is one term in the upper half which does not get cancelled.
The binomial theorem states that,
${{\left( a+b \right)}^{n}}=\left( {}^{n}{{C}_{0}} \right){{a}^{n}}+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{2}} \right){{a}^{n-2}}{{b}^{2}}+......+\left( {}^{n}{{C}_{n-1}} \right)a{{b}^{n-1}}+\left( {}^{n}{{C}_{n}} \right){{b}^{n}}$, where ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . We can see that the irrespective of the expression the coefficients remain the same.
Complete step-by-step answer:
We are given the expression and we need to find the binomial coefficients of the expansion.
The binomial theorem states that,
${{\left( a+b \right)}^{n}}=\left( {}^{n}{{C}_{0}} \right){{a}^{n}}+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{2}} \right){{a}^{n-2}}{{b}^{2}}+......+\left( {}^{n}{{C}_{n-1}} \right)a{{b}^{n-1}}+\left( {}^{n}{{C}_{n}} \right){{b}^{n}}$
Where ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
We are given that the product of the coefficients of the binomial of ${{\left( 1+x \right)}^{n}}$ be ${{P}_{n}}$ .
We can see that irrespective of the expression the coefficients remain the same.
Therefore, ${{P}_{n}}=\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)......\left( {}^{n}{{C}_{n}} \right).................(i)$
Therefore, the term ${{P}_{n+1}}=\left( {}^{n+1}{{C}_{0}} \right)\left( {}^{n+1}{{C}_{1}} \right)\left( {}^{n+2}{{C}_{2}} \right)......\left( {}^{n+1}{{C}_{n+1}} \right).............................(ii)$ .
Solving equation (i) we get,
$\begin{align}
& {{P}_{n}}=\left( {}^{n}{{C}_{0}} \right)\left( {}^{n}{{C}_{1}} \right)\left( {}^{n}{{C}_{2}} \right)......\left( {}^{n}{{C}_{n}} \right) \\
& =\left( \dfrac{n!}{n!} \right)\left( \dfrac{n!}{\left( n-1 \right)!} \right)\left( \dfrac{n!}{2\left( n-2 \right)!} \right)......\left( \dfrac{n!}{n!} \right) \\
& =1\times \left( \dfrac{n}{1!} \right)\times \left( \dfrac{n\left( n-1 \right)}{2!} \right)\times \left( \dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!} \right).........\left( \dfrac{n!}{n!} \right)......................(iii)
\end{align}$
We can write the value ${{P}_{n+1}}$ just by replacing (n) by (n+1).
Therefore,
\[{{P}_{n+1}}=\left( \dfrac{n+1}{1!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)}{2!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)}{3!} \right).........\left( \dfrac{\left( n+1 \right)!}{\left( n+1 \right)!} \right)......................(iv)\]
Dividing the equation (iv) by (iii), we get,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{\left( \dfrac{n+1}{1!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)}{2!} \right)\times \left( \dfrac{\left( n+1 \right)\left( n \right)\left( n-1 \right)}{3!} \right).........\left( \dfrac{\left( n+1 \right)!}{\left( n+1 \right)!} \right)}{1\times \left( \dfrac{n}{1!} \right)\times \left( \dfrac{n\left( n-1 \right)}{2!} \right)\times \left( \dfrac{n\left( n-1 \right)\left( n-2 \right)}{3!} \right).........\left( \dfrac{n!}{n!} \right)}$
As we can see that the factorial in the denominators gets cancelled except the last terms
Therefore, by solving we get,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{\dfrac{\left( n+1 \right)\left( n+1 \right)\left( n \right)\left( n+1 \right)\left( n \right)\left( n-1 \right).....\left( n+1 \right)!}{\left( n+1 \right)!}}{\left( n \right)\left( n \right)\left( n-1 \right)\left( n \right)\left( n-1 \right)\left( n-2 \right).....\left( n! \right)}$
There is (n+1) terms (n+1) times till the end in the numerator, whereas there are n terms in the denominator n times.
Similarly, there is one n less than the number of terms that is (n+1) times. Therefore, there are n terms n times in the numerator.
So we can show that with the same analogy that (n-1) terms are repeated (n-1) terms.
In the same way in the denominator, there are (n-1) terms repeated (n-1) times and so on.
Hence, the expression becomes,
$\dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{{{\left( n+1 \right)}^{n+1}}{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}......1}{{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}{{\left( n-2 \right)}^{n-2}}......1\left( n+1 \right)!}$
Solving this further we get,
$\begin{align}
& \dfrac{{{P}_{n+1}}}{{{P}_{n}}}=\dfrac{{{\left( n+1 \right)}^{n+1}}{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}......1}{{{\left( n \right)}^{n}}{{\left( n-1 \right)}^{n-1}}{{\left( n-2 \right)}^{n-2}}......1\left( n+1 \right)!} \\
& =\dfrac{{{\left( n+1 \right)}^{n+1}}}{\left( n+1 \right)!} \\
& =\dfrac{{{\left( n+1 \right)}^{n}}}{n!}
\end{align}$
Hence, the correct option is (a).
Note: We need to understand the analogy of (n+1) appearing (n+1) times and (n) appearing (n) times and so on. There is a similar case in the denominator starting from (n) repeating (n) times, followed by (n-1) appearing (n-1) times and so on. This makes the expression simplified. Also initially while cancelling the factorials in the denominator there is one term in the upper half which does not get cancelled.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

