
If $P=\int{{{\text{e}}^{ax}}\text{cosbx }dx} $ and $ Q=\int{{{\text{e}}^{ax}}\text{sinbx }dx} $ , then $ {{\tan }^{-1}}\left( \dfrac{Q}{P} \right)+{{\tan }^{-1}}\left( \dfrac{b}{a} \right) $ is equal to:
(a) ax
(b) bx
(c) $ \dfrac{x}{a} $
(d) $ \dfrac{x}{b} $
Answer
590.4k+ views
Hint: Start by applying by-parts as \[P=\int{{{\text{e}}^{ax}}\text{cosbx }dx}=\cos bx\int{{{e}^{ax}}}dx-\int{\dfrac{d\left( \cos bx \right)}{dx}\left( \int{{{e}^{ax}}}dx \right)}dx\] . When you will simplify and substitute $ Q=\int{{{\text{e}}^{ax}}\text{sinbx }dx} $ , we get \[P=\cos bx\times \dfrac{{{e}^{ax}}}{a}-\dfrac{b}{a}\times Q\] . Rearrange it and let it be equation (i). Repeat the same with Q and let it be equation (ii). Now divide both the equations and use the formula $ {{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\dfrac{A+B}{1-AB} $ to get the answer.
Complete step-by-step answer:
Let us start with the integral given in the above question.
$ P=\int{{{\text{e}}^{ax}}\text{cosbx }dx} $
Now according to the rule of the integration by parts:
$ \int{uvdx=u\int{v}}dx-\int{\left( \dfrac{du}{dx}\int{vdx} \right)} $ . From the two functions, u and v are decided using the ILATE preference rule. According to the ILATE rule, the preference order for u in decreasing order is Inverse, Logarithmic, Algebraic, Trigonometric and Exponential. For $ {{\text{e}}^{ax}}\text{cosbx} $ , v is $ {{e}^{ax}} $ and u is $ \cos bx $ .
\[P=\int{{{\text{e}}^{ax}}\text{cosbx }dx}=\cos bx\int{{{e}^{ax}}}dx-\int{\dfrac{d\left( \cos bx \right)}{dx}\left( \int{{{e}^{ax}}}dx \right)}dx\]
Now, we know that $ \dfrac{d\left( \cos bx \right)}{dx}=-\dfrac{\operatorname{sinb}x}{b}\text{ and }\int{{{e}^{ax}}dx}=\dfrac{{{e}^{ax}}}{a} $ . So, if we put this in our integral and simplify, we get
\[P=\cos bx\times \dfrac{{{e}^{ax}}}{a}+\int{\dfrac{b}{a}\sin bx\times {{e}^{ax}}}dx\]
\[\Rightarrow P=\cos bx\times \dfrac{{{e}^{ax}}}{a}+\dfrac{b}{a}\times \int{\sin bx\times {{e}^{ax}}}dx\]
Now, we know that $ Q=\int{{{\text{e}}^{ax}}\text{sinbx }dx} $ .
\[P=\cos bx\times \dfrac{{{e}^{ax}}}{a}+\dfrac{b}{a}\times Q\]
\[\Rightarrow P-\dfrac{b}{a}\times Q=\dfrac{\cos bx\times {{e}^{ax}}}{a}..........(i)\]
Similarly, we will solve Q.
\[Q=\int{{{\text{e}}^{ax}}\text{sinbx }dx}=\sin bx\int{{{e}^{ax}}}dx-\int{\dfrac{d\left( \sin bx \right)}{dx}\left( \int{{{e}^{ax}}}dx \right)}dx\]
Now, we know that $ \dfrac{d\left( \sin bx \right)}{dx}=\dfrac{cosbx}{b}\text{ and }\int{{{e}^{ax}}dx}=\dfrac{{{e}^{ax}}}{a} $ . So, if we put this in our integral and simplify, we get
\[Q=\sin bx\times \dfrac{{{e}^{ax}}}{a}-\int{\dfrac{b}{a}\cos bx\times {{e}^{ax}}}dx\]
\[\Rightarrow Q=\sin bx\times \dfrac{{{e}^{ax}}}{a}-\dfrac{b}{a}\times \int{\cos bx\times {{e}^{ax}}}dx\]
Now, we know that $ P=\int{{{\text{e}}^{ax}}\text{cosbx }dx} $ .
\[Q=\sin bx\times \dfrac{{{e}^{ax}}}{a}-\dfrac{b}{a}\times P\]
\[\Rightarrow Q+\dfrac{b}{a}\times P=\dfrac{\sin bx\times {{e}^{ax}}}{a}..........(ii)\]
Now we will divide equation (ii), by equation (i). On doing so, we get
\[\dfrac{Q+\dfrac{b}{a}\times P}{P-\dfrac{b}{a}\times Q}=\dfrac{\dfrac{\sin bx\times {{e}^{ax}}}{a}}{\dfrac{\cos bx\times {{e}^{ax}}}{a}}\]
Now we will take P common from numerator and denominator. On doing so, we get
\[\Rightarrow \dfrac{\left( \dfrac{Q}{P}+\dfrac{b}{a} \right)P}{\left( 1-\dfrac{b}{a}\times \dfrac{Q}{P} \right)P}=\dfrac{\sin bx}{\cos bx}\]
We know that $ \dfrac{\sin x}{\cos x}=\tan x $ .
\[\dfrac{\dfrac{Q}{P}+\dfrac{b}{a}}{1-\dfrac{b}{a}\times \dfrac{Q}{P}}=\tan bx\]
Now, we will use the fact that \[\tan b=\tan a\Rightarrow b={{\tan }^{-1}}\tan a\] .
\[{{\tan }^{-1}}\left( \dfrac{\dfrac{Q}{P}+\dfrac{b}{a}}{1-\dfrac{b}{a}\times \dfrac{Q}{P}} \right)=bx\]
Now, if we compare this with the formula $ {{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\dfrac{A+B}{1-AB} $ , we find that $ A=\dfrac{Q}{P} $ and $ B=\dfrac{b}{a} $ .
\[{{\tan }^{-1}}\left( \dfrac{Q}{P} \right)+{{\tan }^{-1}}\left( \dfrac{b}{a} \right)=bx\]
Hence, the answer to the above question is option (b).
Note: See while you use integral by-parts, you don’t have to put the constant of integral I each and every step, but you just have to put a constant term at the end of the integrated answer to compensate for all the constant terms that would have appeared. Also, you need to remember all the basic formulas that we use for indefinite integrals as they are used in definite integrations as well. Also, the formula $ {{\tan }^{-1}}A+{{\tan }^{-1}}B $ is different for different cases and can be represented as:
$ {{\tan }^{-1}}A+{{\tan }^{-1}}B=\left\{ \begin{align}
& {{\tan }^{-1}}\dfrac{A+B}{1-AB}\text{ AB < 1} \\
& \pi +{{\tan }^{-1}}\dfrac{A+B}{1-AB}\text{ AB > 1} \\
\end{align} \right. $
Complete step-by-step answer:
Let us start with the integral given in the above question.
$ P=\int{{{\text{e}}^{ax}}\text{cosbx }dx} $
Now according to the rule of the integration by parts:
$ \int{uvdx=u\int{v}}dx-\int{\left( \dfrac{du}{dx}\int{vdx} \right)} $ . From the two functions, u and v are decided using the ILATE preference rule. According to the ILATE rule, the preference order for u in decreasing order is Inverse, Logarithmic, Algebraic, Trigonometric and Exponential. For $ {{\text{e}}^{ax}}\text{cosbx} $ , v is $ {{e}^{ax}} $ and u is $ \cos bx $ .
\[P=\int{{{\text{e}}^{ax}}\text{cosbx }dx}=\cos bx\int{{{e}^{ax}}}dx-\int{\dfrac{d\left( \cos bx \right)}{dx}\left( \int{{{e}^{ax}}}dx \right)}dx\]
Now, we know that $ \dfrac{d\left( \cos bx \right)}{dx}=-\dfrac{\operatorname{sinb}x}{b}\text{ and }\int{{{e}^{ax}}dx}=\dfrac{{{e}^{ax}}}{a} $ . So, if we put this in our integral and simplify, we get
\[P=\cos bx\times \dfrac{{{e}^{ax}}}{a}+\int{\dfrac{b}{a}\sin bx\times {{e}^{ax}}}dx\]
\[\Rightarrow P=\cos bx\times \dfrac{{{e}^{ax}}}{a}+\dfrac{b}{a}\times \int{\sin bx\times {{e}^{ax}}}dx\]
Now, we know that $ Q=\int{{{\text{e}}^{ax}}\text{sinbx }dx} $ .
\[P=\cos bx\times \dfrac{{{e}^{ax}}}{a}+\dfrac{b}{a}\times Q\]
\[\Rightarrow P-\dfrac{b}{a}\times Q=\dfrac{\cos bx\times {{e}^{ax}}}{a}..........(i)\]
Similarly, we will solve Q.
\[Q=\int{{{\text{e}}^{ax}}\text{sinbx }dx}=\sin bx\int{{{e}^{ax}}}dx-\int{\dfrac{d\left( \sin bx \right)}{dx}\left( \int{{{e}^{ax}}}dx \right)}dx\]
Now, we know that $ \dfrac{d\left( \sin bx \right)}{dx}=\dfrac{cosbx}{b}\text{ and }\int{{{e}^{ax}}dx}=\dfrac{{{e}^{ax}}}{a} $ . So, if we put this in our integral and simplify, we get
\[Q=\sin bx\times \dfrac{{{e}^{ax}}}{a}-\int{\dfrac{b}{a}\cos bx\times {{e}^{ax}}}dx\]
\[\Rightarrow Q=\sin bx\times \dfrac{{{e}^{ax}}}{a}-\dfrac{b}{a}\times \int{\cos bx\times {{e}^{ax}}}dx\]
Now, we know that $ P=\int{{{\text{e}}^{ax}}\text{cosbx }dx} $ .
\[Q=\sin bx\times \dfrac{{{e}^{ax}}}{a}-\dfrac{b}{a}\times P\]
\[\Rightarrow Q+\dfrac{b}{a}\times P=\dfrac{\sin bx\times {{e}^{ax}}}{a}..........(ii)\]
Now we will divide equation (ii), by equation (i). On doing so, we get
\[\dfrac{Q+\dfrac{b}{a}\times P}{P-\dfrac{b}{a}\times Q}=\dfrac{\dfrac{\sin bx\times {{e}^{ax}}}{a}}{\dfrac{\cos bx\times {{e}^{ax}}}{a}}\]
Now we will take P common from numerator and denominator. On doing so, we get
\[\Rightarrow \dfrac{\left( \dfrac{Q}{P}+\dfrac{b}{a} \right)P}{\left( 1-\dfrac{b}{a}\times \dfrac{Q}{P} \right)P}=\dfrac{\sin bx}{\cos bx}\]
We know that $ \dfrac{\sin x}{\cos x}=\tan x $ .
\[\dfrac{\dfrac{Q}{P}+\dfrac{b}{a}}{1-\dfrac{b}{a}\times \dfrac{Q}{P}}=\tan bx\]
Now, we will use the fact that \[\tan b=\tan a\Rightarrow b={{\tan }^{-1}}\tan a\] .
\[{{\tan }^{-1}}\left( \dfrac{\dfrac{Q}{P}+\dfrac{b}{a}}{1-\dfrac{b}{a}\times \dfrac{Q}{P}} \right)=bx\]
Now, if we compare this with the formula $ {{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\dfrac{A+B}{1-AB} $ , we find that $ A=\dfrac{Q}{P} $ and $ B=\dfrac{b}{a} $ .
\[{{\tan }^{-1}}\left( \dfrac{Q}{P} \right)+{{\tan }^{-1}}\left( \dfrac{b}{a} \right)=bx\]
Hence, the answer to the above question is option (b).
Note: See while you use integral by-parts, you don’t have to put the constant of integral I each and every step, but you just have to put a constant term at the end of the integrated answer to compensate for all the constant terms that would have appeared. Also, you need to remember all the basic formulas that we use for indefinite integrals as they are used in definite integrations as well. Also, the formula $ {{\tan }^{-1}}A+{{\tan }^{-1}}B $ is different for different cases and can be represented as:
$ {{\tan }^{-1}}A+{{\tan }^{-1}}B=\left\{ \begin{align}
& {{\tan }^{-1}}\dfrac{A+B}{1-AB}\text{ AB < 1} \\
& \pi +{{\tan }^{-1}}\dfrac{A+B}{1-AB}\text{ AB > 1} \\
\end{align} \right. $
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

