
If $P=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( \prod\limits_{r=1}^{n}{\left( {{n}^{3}}+{{r}^{3}} \right)} \right)}^{\dfrac{1}{n}}}}{{{n}^{3}}}$ and $\lambda =\int_{0}^{1}{\dfrac{1}{{{x}^{3}}+1}}$, then lnP is equal to
[a] $\ln 2-1+\lambda $
[b] $\ln 2-3+3\lambda $
[c] $2\ln 2-\lambda $
[d] $\ln 4-3+4\lambda $
Answer
574.2k+ views
Hint: In the expression for P take log on both sides and use the fact that $\log \left( \prod\limits_{r=1}^{n}{f\left( r \right)} \right)=\sum\limits_{r=1}^{n}{\log \left( f\left( r \right) \right)}$ and $\log \left( {{a}^{n}} \right)=n\log a$. Hence prove that $\log P=\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)}$. Use the fact that $\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\sum\limits_{r=x}^{y}{f\left( \dfrac{r}{n} \right)=\int_{a}^{b}{f\left( x \right)dx}}$ where $a=\displaystyle \lim_{n\to \infty }\dfrac{x}{n}$ and $b=\displaystyle \lim_{n\to \infty }\dfrac{y}{n}$. Hence prove that $\ln P=\int_{0}^{1}{\log \left( 1+{{x}^{3}} \right)dx}$ Using integration by parts express $\ln P$ in terms of $\lambda $ and hence find which of the options is correct.
Complete step-by-step answer:
We have
$P=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( \prod\limits_{r=1}^{n}{\left( {{n}^{3}}+{{r}^{3}} \right)} \right)}^{\dfrac{1}{n}}}}{{{n}^{3}}}$
Hence, we have
$P=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( \prod\limits_{r=1}^{n}{{{n}^{3}}\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)}^{\dfrac{1}{n}}}}{{{n}^{3}}}$
We know that $\prod\limits_{r=1}^{n}{af\left( r \right)}={{a}^{n}}\prod\limits_{r=1}^{n}{f\left( r \right)}$, where a is independent of r.
Hence, we have
$P=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( {{n}^{3n}}\prod\limits_{r=1}^{n}{\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)}^{\dfrac{1}{n}}}}{{{n}^{3}}}=\displaystyle \lim_{n\to \infty }{{\left( \prod\limits_{r=1}^{n}{\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)}^{\dfrac{1}{n}}}$
Taking log on both sides, we get
$\log P=\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\log \left( \prod\limits_{r=1}^{n}{\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)$
We know that $\log \left( \prod\limits_{r=1}^{n}{f\left( r \right)} \right)=\sum\limits_{r=1}^{n}{\log \left( f\left( r \right) \right)}$
Hence, we have
$\log P=\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)}$
We know that $\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\sum\limits_{r=x}^{y}{f\left( \dfrac{r}{n} \right)=\int_{a}^{b}{f\left( x \right)dx}}$ where $a=\displaystyle \lim_{n\to \infty }\dfrac{x}{n}$ and $b=\displaystyle \lim_{n\to \infty }\dfrac{y}{n}$.
Hence, we have
$\log P=\int_{0}^{1}{\log \left( 1+{{x}^{3}} \right)dx}$
We know that if $\int{f\left( x \right)dx}=u\left( x \right)$ and $\dfrac{d}{dx}g\left( x \right)=v\left( x \right)$, then $\int{f\left( x \right)g\left( x \right)dx}=g\left( x \right)u\left( x \right)-\int{u\left( x \right)v\left( x \right)dx}$. This is known as integration by parts.
The function f(x) is called the second function and the function g(x) is called the first function.
The order of preference (in general) for choosing first function is given by ILATE rule
I = Inverse Trigonometric
L = Logarithmic
A = Algebraic
T = Trigonometric
E = Exponential
Using the above rule, we will take f(x) =1 and $g\left( x \right)=\log \left( 1+{{x}^{3}} \right)$, and we have
$u\left( x \right)=\int{1dx}=x$ and $v\left( x \right)=\dfrac{d}{dx}\left( \log \left( 1+{{x}^{3}} \right) \right)=\dfrac{3{{x}^{2}}}{1+{{x}^{3}}}$
Hence, we have
$\begin{align}
& \log P=\left. \left( \log \left( 1+{{x}^{3}} \right)x \right) \right|_{0}^{1}-\int_{0}^{1}{\dfrac{3{{x}^{3}}}{{{x}^{3}}+1}dx} \\
& =\ln 2-3\int_{0}^{1}{\dfrac{{{x}^{3}}}{{{x}^{3}}+1}dx} \\
\end{align}$
Adding and subtracting 1 in the numerator of the integrand, we get
$\begin{align}
& \log P=\ln 2-3\int_{0}^{1}{\dfrac{{{x}^{3}}+1-1}{{{x}^{3}}+1}dx} \\
& =\ln 2-3\int_{0}^{1}{1dx}+3\int_{0}^{1}{\dfrac{dx}{{{x}^{3}}+1}} \\
\end{align}$
Hence, we have
$\log P=\ln 2-3+3\lambda $
So, the correct answer is “Option b”.
Note: [1] The formula $\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\sum\limits_{r=x}^{y}{f\left( \dfrac{r}{n} \right)=\int_{a}^{b}{f\left( x \right)dx}}$ where $a=\displaystyle \lim_{n\to \infty }\dfrac{x}{n}$ and $b=\displaystyle \lim_{n\to \infty }\dfrac{y}{n}$ is actually definition of definite integral as a limit of a sum. We can memorise the formula by keeping the following relations in mind
$\sum{{}}\to \int{{}},x \to a,y\to b,\dfrac{r}{n}\to x,\dfrac{1}{n}\to dx$
Complete step-by-step answer:
We have
$P=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( \prod\limits_{r=1}^{n}{\left( {{n}^{3}}+{{r}^{3}} \right)} \right)}^{\dfrac{1}{n}}}}{{{n}^{3}}}$
Hence, we have
$P=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( \prod\limits_{r=1}^{n}{{{n}^{3}}\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)}^{\dfrac{1}{n}}}}{{{n}^{3}}}$
We know that $\prod\limits_{r=1}^{n}{af\left( r \right)}={{a}^{n}}\prod\limits_{r=1}^{n}{f\left( r \right)}$, where a is independent of r.
Hence, we have
$P=\displaystyle \lim_{n\to \infty }\dfrac{{{\left( {{n}^{3n}}\prod\limits_{r=1}^{n}{\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)}^{\dfrac{1}{n}}}}{{{n}^{3}}}=\displaystyle \lim_{n\to \infty }{{\left( \prod\limits_{r=1}^{n}{\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)}^{\dfrac{1}{n}}}$
Taking log on both sides, we get
$\log P=\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\log \left( \prod\limits_{r=1}^{n}{\left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)} \right)$
We know that $\log \left( \prod\limits_{r=1}^{n}{f\left( r \right)} \right)=\sum\limits_{r=1}^{n}{\log \left( f\left( r \right) \right)}$
Hence, we have
$\log P=\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\sum\limits_{r=1}^{n}{\log \left( 1+\dfrac{{{r}^{3}}}{{{n}^{3}}} \right)}$
We know that $\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\sum\limits_{r=x}^{y}{f\left( \dfrac{r}{n} \right)=\int_{a}^{b}{f\left( x \right)dx}}$ where $a=\displaystyle \lim_{n\to \infty }\dfrac{x}{n}$ and $b=\displaystyle \lim_{n\to \infty }\dfrac{y}{n}$.
Hence, we have
$\log P=\int_{0}^{1}{\log \left( 1+{{x}^{3}} \right)dx}$
We know that if $\int{f\left( x \right)dx}=u\left( x \right)$ and $\dfrac{d}{dx}g\left( x \right)=v\left( x \right)$, then $\int{f\left( x \right)g\left( x \right)dx}=g\left( x \right)u\left( x \right)-\int{u\left( x \right)v\left( x \right)dx}$. This is known as integration by parts.
The function f(x) is called the second function and the function g(x) is called the first function.
The order of preference (in general) for choosing first function is given by ILATE rule
I = Inverse Trigonometric
L = Logarithmic
A = Algebraic
T = Trigonometric
E = Exponential
Using the above rule, we will take f(x) =1 and $g\left( x \right)=\log \left( 1+{{x}^{3}} \right)$, and we have
$u\left( x \right)=\int{1dx}=x$ and $v\left( x \right)=\dfrac{d}{dx}\left( \log \left( 1+{{x}^{3}} \right) \right)=\dfrac{3{{x}^{2}}}{1+{{x}^{3}}}$
Hence, we have
$\begin{align}
& \log P=\left. \left( \log \left( 1+{{x}^{3}} \right)x \right) \right|_{0}^{1}-\int_{0}^{1}{\dfrac{3{{x}^{3}}}{{{x}^{3}}+1}dx} \\
& =\ln 2-3\int_{0}^{1}{\dfrac{{{x}^{3}}}{{{x}^{3}}+1}dx} \\
\end{align}$
Adding and subtracting 1 in the numerator of the integrand, we get
$\begin{align}
& \log P=\ln 2-3\int_{0}^{1}{\dfrac{{{x}^{3}}+1-1}{{{x}^{3}}+1}dx} \\
& =\ln 2-3\int_{0}^{1}{1dx}+3\int_{0}^{1}{\dfrac{dx}{{{x}^{3}}+1}} \\
\end{align}$
Hence, we have
$\log P=\ln 2-3+3\lambda $
So, the correct answer is “Option b”.
Note: [1] The formula $\displaystyle \lim_{n\to \infty }\dfrac{1}{n}\sum\limits_{r=x}^{y}{f\left( \dfrac{r}{n} \right)=\int_{a}^{b}{f\left( x \right)dx}}$ where $a=\displaystyle \lim_{n\to \infty }\dfrac{x}{n}$ and $b=\displaystyle \lim_{n\to \infty }\dfrac{y}{n}$ is actually definition of definite integral as a limit of a sum. We can memorise the formula by keeping the following relations in mind
$\sum{{}}\to \int{{}},x \to a,y\to b,\dfrac{r}{n}\to x,\dfrac{1}{n}\to dx$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

