
If \[p=9+3i\] and \[q=2-i\], then \[pq\] is equal to
1. \[15+15i\]
2. \[21-3i\]
3. \[18+3i\]
4. \[1-i\]
Answer
612.6k+ views
Hint: Various properties of complex numbers are used to solve this problem. The properties used in this problem are:
\[\begin{align}
& \Rightarrow \sqrt{-1}=i \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
Complete Step-by-Step solution:
A complex number $z$ has two parts. A real part and an imaginary part. If ${{z}_{1}}=a+ib$ and ${{z}_{2}}=c+id$ are two complex numbers then multiplication of ${{z}_{1}}$ and ${{z}_{2}}$ is denoted by ${{z}_{1}}{{z}_{2}}$.
$\begin{align}
& \Rightarrow {{z}_{1}}{{z}_{2}}=(a+ib)(c+id) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac+iad+ibc+{{i}^{2}}bd) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac-bd+iad+ibc) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=ac-bd+i(ad+bc) \\
\end{align}$
This means that the real part of ${{z}_{1}}{{z}_{2}}$ is $ac-bd$ and the imaginary part of ${{z}_{1}}{{z}_{2}}$ is $ad+cb$. We will use this property to solve this problem.
The symbol $i$(iota) is used to represent the square root of $\sqrt{-1}$. This also implies, ${{i}^{2}}=-1$, which means $i$ is the solution of the quadratic equation ${{x}^{2}}+1=0$. In this way the square root of any negative number can be expressed using $i$.
$\begin{align}
& \Rightarrow \sqrt{-1}=i.......(i) \\
& \Rightarrow {{i}^{2}}=-1........(ii) \\
\end{align}$
Here we have,
\[\Rightarrow p=9+3i......(iii)\]
\[\Rightarrow q=2-i......(iv)\]
In this question we have to find \[pq\].
We know , if ${{z}_{1}}=a+ib$ and ${{z}_{2}}=c+id$ are two complex numbers then multiplication of ${{z}_{1}}$ and ${{z}_{2}}$ is denoted by ${{z}_{1}}{{z}_{2}}$.
$\begin{align}
& \Rightarrow {{z}_{1}}{{z}_{2}}=(a+ib)(c+id) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac+iad+ibc+{{i}^{2}}bd) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac-bd+iad+ibc) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=ac-bd+i(ad+bc) \\
\end{align}$
Here ${{z}_{1}}$ is $p$ and ${{z}_{2}}$ is $q$.
So comparing equations (i) and (ii) with ${{z}_{1}}$and ${{z}_{2}}$ we can write \[pq\] as,
$\begin{align}
& \Rightarrow pq=(9+3i)(2-i) \\
& \Rightarrow pq=(9\times 2-9i+3i\times 2-3{{i}^{2}}).......(v) \\
\end{align}$
Here, in equation (v) we have ${{i}^{2}}$. Substituting this with equation (ii) in equation (v) and simplifying, we get,
$\begin{align}
& \Rightarrow pq=(18-9i+6i-3\times -1) \\
& \Rightarrow pq=(18-9i+6i+3) \\
& \Rightarrow pq=(21-3i).........(vi) \\
\end{align}$
Hence, the value of \[pq\] is $21-3i$.
$\therefore $the correct answer is option 2.
Note: In this problem we can also find the answer using the formula, $pq=(ac-bd)+i(ad+bc)$.
Here, \[p=9+3i\], this implies \[a=9,b=3\]. Similarly, \[q=2-i\] implies \[c=2,d=-1\].
Directly substituting this we get,
$\begin{align}
& \Rightarrow pq=(ac-bd)+i(ad+bc) \\
& \Rightarrow pq=(9\times 2-(3\times -1))+i(9\times -1+3\times 2) \\
& \Rightarrow pq=(18+3)+i(-9+6) \\
& \Rightarrow pq=21-3i. \\
\end{align}$
\[\begin{align}
& \Rightarrow \sqrt{-1}=i \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
Complete Step-by-Step solution:
A complex number $z$ has two parts. A real part and an imaginary part. If ${{z}_{1}}=a+ib$ and ${{z}_{2}}=c+id$ are two complex numbers then multiplication of ${{z}_{1}}$ and ${{z}_{2}}$ is denoted by ${{z}_{1}}{{z}_{2}}$.
$\begin{align}
& \Rightarrow {{z}_{1}}{{z}_{2}}=(a+ib)(c+id) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac+iad+ibc+{{i}^{2}}bd) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac-bd+iad+ibc) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=ac-bd+i(ad+bc) \\
\end{align}$
This means that the real part of ${{z}_{1}}{{z}_{2}}$ is $ac-bd$ and the imaginary part of ${{z}_{1}}{{z}_{2}}$ is $ad+cb$. We will use this property to solve this problem.
The symbol $i$(iota) is used to represent the square root of $\sqrt{-1}$. This also implies, ${{i}^{2}}=-1$, which means $i$ is the solution of the quadratic equation ${{x}^{2}}+1=0$. In this way the square root of any negative number can be expressed using $i$.
$\begin{align}
& \Rightarrow \sqrt{-1}=i.......(i) \\
& \Rightarrow {{i}^{2}}=-1........(ii) \\
\end{align}$
Here we have,
\[\Rightarrow p=9+3i......(iii)\]
\[\Rightarrow q=2-i......(iv)\]
In this question we have to find \[pq\].
We know , if ${{z}_{1}}=a+ib$ and ${{z}_{2}}=c+id$ are two complex numbers then multiplication of ${{z}_{1}}$ and ${{z}_{2}}$ is denoted by ${{z}_{1}}{{z}_{2}}$.
$\begin{align}
& \Rightarrow {{z}_{1}}{{z}_{2}}=(a+ib)(c+id) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac+iad+ibc+{{i}^{2}}bd) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=(ac-bd+iad+ibc) \\
& \Rightarrow {{z}_{1}}{{z}_{2}}=ac-bd+i(ad+bc) \\
\end{align}$
Here ${{z}_{1}}$ is $p$ and ${{z}_{2}}$ is $q$.
So comparing equations (i) and (ii) with ${{z}_{1}}$and ${{z}_{2}}$ we can write \[pq\] as,
$\begin{align}
& \Rightarrow pq=(9+3i)(2-i) \\
& \Rightarrow pq=(9\times 2-9i+3i\times 2-3{{i}^{2}}).......(v) \\
\end{align}$
Here, in equation (v) we have ${{i}^{2}}$. Substituting this with equation (ii) in equation (v) and simplifying, we get,
$\begin{align}
& \Rightarrow pq=(18-9i+6i-3\times -1) \\
& \Rightarrow pq=(18-9i+6i+3) \\
& \Rightarrow pq=(21-3i).........(vi) \\
\end{align}$
Hence, the value of \[pq\] is $21-3i$.
$\therefore $the correct answer is option 2.
Note: In this problem we can also find the answer using the formula, $pq=(ac-bd)+i(ad+bc)$.
Here, \[p=9+3i\], this implies \[a=9,b=3\]. Similarly, \[q=2-i\] implies \[c=2,d=-1\].
Directly substituting this we get,
$\begin{align}
& \Rightarrow pq=(ac-bd)+i(ad+bc) \\
& \Rightarrow pq=(9\times 2-(3\times -1))+i(9\times -1+3\times 2) \\
& \Rightarrow pq=(18+3)+i(-9+6) \\
& \Rightarrow pq=21-3i. \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

