
If P represents radiation pressure, C represents the speed of light, and Q represents radiation energy striking a unit area per second, the non-zero integers x, y and z such that ${ P }^{ x }.{ Q }^{ y }.{ C }^{ z }$ is dimensionless, find the values of x, y and z.
Answer
509.7k+ views
Hint: Write down the dimensions of radiation pressure, speed of light and radiation energy. Substitute them in the given equation which is dimensionless. Apply the principle of homogeneity and get the equations. Solve those equations and find the value of x, y and z.
Complete step by step answer:
Given: ${ \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }$ is dimensionless
$\therefore { \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$ …(1)
Dimensions of Radiation pressure are $\left[ P \right] =\left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right]$ …(2)
Dimensions of Speed of light is $\left[ C \right] =\left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right]$ …(3)
Dimensions of Radiation Energy is $\left[ Q \right] =\left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right]$ …(4)
Substituting equation. (2), equation. (3) and equation. (4) in equation. (1) we get,
${ \left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right] }^{ x }{ \quad \left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right] }^{ y }\quad { \left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x }{ L }^{ -x }{ T }^{ -2x } \right] }{ \quad \left[ { M }^{ y }{ L }^{ 0 }{ T }^{ -3y } \right] }\quad { \left[ { M }^{ 0 }{ L }^{ z }{ T }^{ -z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x+y }{ L }^{ -x+z }{ T }^{ -2x-3y-z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
Now, by equating the powers on the left side with the right side,
$ \quad x\quad +\quad y=\quad 0 $…(1)
$ \quad -x\quad +\quad z=\quad 0$ …(2)
$ \quad -2x\quad -\quad 3y\quad -\quad z=\quad 0$ …(3)
Solving equation. (1), (2) and (3) we get,
x= 1, y= -1, z= 1
Hence, the values of x, y and z are 1, -1 and 1 respectively.
Note:
Take care while writing dimensions of radiation energy. You can’t write dimensions the same as that of energy. Dimensions of energy and radiation energy are not the same. As it is mentioned in the question, it is radiation energy per unit area and per sec.
Complete step by step answer:
Given: ${ \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }$ is dimensionless
$\therefore { \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$ …(1)
Dimensions of Radiation pressure are $\left[ P \right] =\left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right]$ …(2)
Dimensions of Speed of light is $\left[ C \right] =\left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right]$ …(3)
Dimensions of Radiation Energy is $\left[ Q \right] =\left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right]$ …(4)
Substituting equation. (2), equation. (3) and equation. (4) in equation. (1) we get,
${ \left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right] }^{ x }{ \quad \left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right] }^{ y }\quad { \left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x }{ L }^{ -x }{ T }^{ -2x } \right] }{ \quad \left[ { M }^{ y }{ L }^{ 0 }{ T }^{ -3y } \right] }\quad { \left[ { M }^{ 0 }{ L }^{ z }{ T }^{ -z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x+y }{ L }^{ -x+z }{ T }^{ -2x-3y-z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
Now, by equating the powers on the left side with the right side,
$ \quad x\quad +\quad y=\quad 0 $…(1)
$ \quad -x\quad +\quad z=\quad 0$ …(2)
$ \quad -2x\quad -\quad 3y\quad -\quad z=\quad 0$ …(3)
Solving equation. (1), (2) and (3) we get,
x= 1, y= -1, z= 1
Hence, the values of x, y and z are 1, -1 and 1 respectively.
Note:
Take care while writing dimensions of radiation energy. You can’t write dimensions the same as that of energy. Dimensions of energy and radiation energy are not the same. As it is mentioned in the question, it is radiation energy per unit area and per sec.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
