
If P represents radiation pressure, C represents the speed of light, and Q represents radiation energy striking a unit area per second, the non-zero integers x, y and z such that ${ P }^{ x }.{ Q }^{ y }.{ C }^{ z }$ is dimensionless, find the values of x, y and z.
Answer
590.7k+ views
Hint: Write down the dimensions of radiation pressure, speed of light and radiation energy. Substitute them in the given equation which is dimensionless. Apply the principle of homogeneity and get the equations. Solve those equations and find the value of x, y and z.
Complete step by step answer:
Given: ${ \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }$ is dimensionless
$\therefore { \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$ …(1)
Dimensions of Radiation pressure are $\left[ P \right] =\left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right]$ …(2)
Dimensions of Speed of light is $\left[ C \right] =\left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right]$ …(3)
Dimensions of Radiation Energy is $\left[ Q \right] =\left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right]$ …(4)
Substituting equation. (2), equation. (3) and equation. (4) in equation. (1) we get,
${ \left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right] }^{ x }{ \quad \left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right] }^{ y }\quad { \left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x }{ L }^{ -x }{ T }^{ -2x } \right] }{ \quad \left[ { M }^{ y }{ L }^{ 0 }{ T }^{ -3y } \right] }\quad { \left[ { M }^{ 0 }{ L }^{ z }{ T }^{ -z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x+y }{ L }^{ -x+z }{ T }^{ -2x-3y-z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
Now, by equating the powers on the left side with the right side,
$ \quad x\quad +\quad y=\quad 0 $…(1)
$ \quad -x\quad +\quad z=\quad 0$ …(2)
$ \quad -2x\quad -\quad 3y\quad -\quad z=\quad 0$ …(3)
Solving equation. (1), (2) and (3) we get,
x= 1, y= -1, z= 1
Hence, the values of x, y and z are 1, -1 and 1 respectively.
Note:
Take care while writing dimensions of radiation energy. You can’t write dimensions the same as that of energy. Dimensions of energy and radiation energy are not the same. As it is mentioned in the question, it is radiation energy per unit area and per sec.
Complete step by step answer:
Given: ${ \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }$ is dimensionless
$\therefore { \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$ …(1)
Dimensions of Radiation pressure are $\left[ P \right] =\left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right]$ …(2)
Dimensions of Speed of light is $\left[ C \right] =\left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right]$ …(3)
Dimensions of Radiation Energy is $\left[ Q \right] =\left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right]$ …(4)
Substituting equation. (2), equation. (3) and equation. (4) in equation. (1) we get,
${ \left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right] }^{ x }{ \quad \left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right] }^{ y }\quad { \left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x }{ L }^{ -x }{ T }^{ -2x } \right] }{ \quad \left[ { M }^{ y }{ L }^{ 0 }{ T }^{ -3y } \right] }\quad { \left[ { M }^{ 0 }{ L }^{ z }{ T }^{ -z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x+y }{ L }^{ -x+z }{ T }^{ -2x-3y-z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
Now, by equating the powers on the left side with the right side,
$ \quad x\quad +\quad y=\quad 0 $…(1)
$ \quad -x\quad +\quad z=\quad 0$ …(2)
$ \quad -2x\quad -\quad 3y\quad -\quad z=\quad 0$ …(3)
Solving equation. (1), (2) and (3) we get,
x= 1, y= -1, z= 1
Hence, the values of x, y and z are 1, -1 and 1 respectively.
Note:
Take care while writing dimensions of radiation energy. You can’t write dimensions the same as that of energy. Dimensions of energy and radiation energy are not the same. As it is mentioned in the question, it is radiation energy per unit area and per sec.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

