
If P represents radiation pressure, C represents the speed of light, and Q represents radiation energy striking a unit area per second, the non-zero integers x, y and z such that ${ P }^{ x }.{ Q }^{ y }.{ C }^{ z }$ is dimensionless, find the values of x, y and z.
Answer
578.7k+ views
Hint: Write down the dimensions of radiation pressure, speed of light and radiation energy. Substitute them in the given equation which is dimensionless. Apply the principle of homogeneity and get the equations. Solve those equations and find the value of x, y and z.
Complete step by step answer:
Given: ${ \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }$ is dimensionless
$\therefore { \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$ …(1)
Dimensions of Radiation pressure are $\left[ P \right] =\left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right]$ …(2)
Dimensions of Speed of light is $\left[ C \right] =\left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right]$ …(3)
Dimensions of Radiation Energy is $\left[ Q \right] =\left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right]$ …(4)
Substituting equation. (2), equation. (3) and equation. (4) in equation. (1) we get,
${ \left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right] }^{ x }{ \quad \left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right] }^{ y }\quad { \left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x }{ L }^{ -x }{ T }^{ -2x } \right] }{ \quad \left[ { M }^{ y }{ L }^{ 0 }{ T }^{ -3y } \right] }\quad { \left[ { M }^{ 0 }{ L }^{ z }{ T }^{ -z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x+y }{ L }^{ -x+z }{ T }^{ -2x-3y-z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
Now, by equating the powers on the left side with the right side,
$ \quad x\quad +\quad y=\quad 0 $…(1)
$ \quad -x\quad +\quad z=\quad 0$ …(2)
$ \quad -2x\quad -\quad 3y\quad -\quad z=\quad 0$ …(3)
Solving equation. (1), (2) and (3) we get,
x= 1, y= -1, z= 1
Hence, the values of x, y and z are 1, -1 and 1 respectively.
Note:
Take care while writing dimensions of radiation energy. You can’t write dimensions the same as that of energy. Dimensions of energy and radiation energy are not the same. As it is mentioned in the question, it is radiation energy per unit area and per sec.
Complete step by step answer:
Given: ${ \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }$ is dimensionless
$\therefore { \left[ P \right] }^{ x }{ \left[ Q \right] }^{ y }{ \left[ C \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$ …(1)
Dimensions of Radiation pressure are $\left[ P \right] =\left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right]$ …(2)
Dimensions of Speed of light is $\left[ C \right] =\left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right]$ …(3)
Dimensions of Radiation Energy is $\left[ Q \right] =\left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right]$ …(4)
Substituting equation. (2), equation. (3) and equation. (4) in equation. (1) we get,
${ \left[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 } \right] }^{ x }{ \quad \left[ { M }^{ 1 }{ L }^{ 0 }{ T }^{ -3 } \right] }^{ y }\quad { \left[ { M }^{ 0 }{ L }^{ 1 }{ T }^{ -1 } \right] }^{ z }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x }{ L }^{ -x }{ T }^{ -2x } \right] }{ \quad \left[ { M }^{ y }{ L }^{ 0 }{ T }^{ -3y } \right] }\quad { \left[ { M }^{ 0 }{ L }^{ z }{ T }^{ -z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
$ \Rightarrow { \left[ { M }^{ x+y }{ L }^{ -x+z }{ T }^{ -2x-3y-z } \right] }=\quad \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]$
Now, by equating the powers on the left side with the right side,
$ \quad x\quad +\quad y=\quad 0 $…(1)
$ \quad -x\quad +\quad z=\quad 0$ …(2)
$ \quad -2x\quad -\quad 3y\quad -\quad z=\quad 0$ …(3)
Solving equation. (1), (2) and (3) we get,
x= 1, y= -1, z= 1
Hence, the values of x, y and z are 1, -1 and 1 respectively.
Note:
Take care while writing dimensions of radiation energy. You can’t write dimensions the same as that of energy. Dimensions of energy and radiation energy are not the same. As it is mentioned in the question, it is radiation energy per unit area and per sec.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

