   Question Answers

# If p, q are real and $p\ne q$ , then the roots of the equation $\left( p-q \right){{x}^{2}}+5\left( p+q \right)x-2\left( p-q \right)=0$ are real and unequal.(a) True(b) False  Hint: We will first find the discriminant of the quadratic equation given to use using the formula ${{b}^{2}}-4ac$ where $a=\left( p-q \right)$, $b=5\left( p+q \right)$ and $c=-2\left( p-q \right)$. Then, we will see whether the roots obtained are greater than zero or not. After that, we will check the property that is given as If ${{b}^{2}}-4ac > 0$, then the roots of the quadratic equation are real and unequal. If it satisfies then we will get the answer.

Here, we are given with equation $\left( p-q \right){{x}^{2}}+5\left( p+q \right)x-2\left( p-q \right)=0$ and we have to find roots.
So, we will find the discriminant of the equation using the formula ${{b}^{2}}-4ac$ . Here, we have $a=\left( p-q \right)$, $b=5\left( p+q \right)$ and $c=-2\left( p-q \right)$. On putting the values, we get as
Discriminant $={{b}^{2}}-4ac$
$={{\left( 5\left( p+q \right) \right)}^{2}}-4\left( p-q \right)\left( -2\left( p-q \right) \right)$
On further expanding the equation, we get as
$=25{{\left( p+q \right)}^{2}}+8\left( p-q \right)\left( p-q \right)$
$=25{{\left( p+q \right)}^{2}}+8{{\left( p-q \right)}^{2}}>0$
Now, we know the formula ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ which cannot be less than or equal to zero as this is perfect square equation where $a\ne b$ .
We also know the property that If ${{b}^{2}}-4ac>0$ , then the roots of the quadratic equation are real and unequal.
So, here we are given that $p\ne q$ so, if we take any value of p, q and try to solve it by putting the equation we will get the roots real and unequal as roots $25{{\left( p+q \right)}^{2}}$ and $8{{\left( p-q \right)}^{2}}$ are different.
We can also check by taking p as 1, and q as 2. On putting in the equation we get as
$=25{{\left( 1+2 \right)}^{2}}+8{{\left( 1-2 \right)}^{2}}$
On solving we get as
$=\left( 25\times 9 \right)+8=200+8=208$
Thus, 208 is greater than zero. So, we can say that unequal and real.
Thus, we are told in question that rotos of the equation will be real and unequal which is true.

So, the correct answer is “Option A”.

Note: There is also direct property of discriminant which is given as
(1) If ${{b}^{2}}-4ac > 0$ , then the roots of the quadratic equation are real and unequal.
(2) If ${{b}^{2}}-4ac = 0$ , then the roots of the quadratic equation are real and equal.
(3) If ${{b}^{2}}-4ac < 0$ , then roots of quadratic equations are a pair of complex conjugates.
(4) If ${{b}^{2}}-4ac > 0\text{ and perfect square}$ , then the roots of the quadratic equation are real, rational unequal.
So, students should know all these properties then only, it will be easy to identify which type of roots satisfies in this question. So, remember all these properties while solving this type of problem.
What are the Functions of the Human Skeletal System?  What are the Successor and Predecessor?  The P-Block Elements  What Happens if the Earth Stops Rotating?  The P-Block Elements  CBSE Class 10 Maths Chapter 4 - Quadratic Equations Formula  CBSE Class 10 Maths Chapter 1 - Real Numbers Formula  The P-Block Elements: Group 17 Elements  Solve the Pair of Linear Equation  CBSE Class 8 Maths Chapter 7 - Cubes and Cube Roots Formulas  Important Questions for CBSE Class 12 Chemistry Chapter 7 - The p-Block Elements  Important Questions for CBSE Class 11 Chemistry Chapter 11 - The p-Block Elements  Important Questions for CBSE Class 7 English Honeycomb Chapter 10 - The Story of Cricket  Important Questions for CBSE Class 10 Maths Chapter 1 - Real Numbers  Important Questions for CBSE Class 8 Science Chapter 10 - Reaching The Age of Adolescence  Important Questions for CBSE Class 6 English A Pact with The Sun Chapter 6 - The Monkey and the Crocodile  Important Questions for CBSE Class 10 Maths Chapter 4 - Quadratic Equations  CBSE Class 8 Science Reaching The Age of Adolescence Worksheets  NCERT Books Free Download for Class 11 Chemistry Chapter 11 - The p-Block Elements  CBSE Class 8 Science Stars and The Solar System Worksheets  CBSE Class 10 Maths Question Paper 2017  CBSE Class 10 Maths Question Paper 2020  Previous Year Question Paper of CBSE Class 10 English  Maths Question Paper for CBSE Class 10 - 2011  Maths Question Paper for CBSE Class 10 - 2008  Maths Question Paper for CBSE Class 10 - 2012  Maths Question Paper for CBSE Class 10 (2016)  Maths Question Paper for CBSE Class 10 - 2010  Maths Question Paper for CBSE Class 10 - 2007  Maths Question Paper for CBSE Class 10 - 2009  RS Aggarwal Class 10 Solutions - Quadratic Equations  NCERT Solutions for Class 10 Maths Chapter 1 Real Numbers  NCERT Solutions for Class 10 Maths Chapter 4 Quadratic Equations  RS Aggarwal Class 10 Solutions - Real Numbers  RD Sharma Solutions for Class 10 Maths Chapter 8 - Quadratic Equations  RD Sharma Solutions for Class 10 Maths Chapter 1 - Real Numbers  NCERT Solutions for Class 10 Social Science India and the Contemporary World - II Chapter 5 - The Age of Industrialisation  NCERT Solutions for Class 8 Maths Chapter 6 Squares and Square Roots  NCERT Solutions for Class 10 Social Science India and the Contemporary World - II Chapter 1 - The Rise of Nationalism in Europe  Lakhmir Singh Physics Class 10 Solutions Chapter 6 - The Human Eyes and The Colorful World  