
If $p = \cos 55^\circ $, $q = \cos 65^\circ $, $r = \cos 175^\circ $ then the value of $\dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}}$ is
Answer
546.6k+ views
Hint: Here, we will first take the LCM of the given expression. Then we will substitute the given values in the expression. We will then simplify the expression using trigonometric formulas and identities. We will solve the equation further to get the required value.
Formula Used:
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Complete step-by-step answer:
It is given that $p = \cos 55^\circ $, $q = \cos 65^\circ $ and $r = \cos 175^\circ $.
First, we will take the LCM of the denominators of the given expression $\dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}}$, we get
$\dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{q + p + r}}{{pq}}$
Now, substituting the given values in this fraction, we get,
$ \Rightarrow \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{\cos 65^\circ + \cos 55^\circ + \cos 175^\circ }}{{\cos 55^\circ \times \cos 65^\circ }}$
Now, using the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ in the numerator for $\cos 65^\circ + \cos 55^\circ $, we get,
$ \Rightarrow \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{2\cos 60^\circ \cos 5^\circ + \cos \left( {180^\circ - 5^\circ } \right)}}{{\cos 55^\circ \times \cos 65^\circ }}$
Now, as we know, $\cos \left( {180^\circ - \theta } \right) = - \cos \theta $ because in the second quadrant, cosine is negative. Therefore, we get
$ \Rightarrow \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{2\cos 60^\circ \cos 5^\circ - \cos 5^\circ }}{{\cos 55^\circ \times \cos 65^\circ }}$
Now, substituting $\cos 60^\circ = \dfrac{1}{2}$ in the above equation, we get
$ \Rightarrow \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{2 \times \dfrac{1}{2} \times \cos 5^\circ - \cos 5^\circ }}{{\cos 55^\circ \times \cos 65^\circ }}$
$ \Rightarrow \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{\cos 5^\circ - \cos 5^\circ }}{{\cos 55^\circ \times \cos 65^\circ }}$
Subtracting the terms in the numerator, we get
$\dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{0}{{\cos 55^\circ \times \cos 65^\circ }} = 0$
Therefore, the value of $\dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}}$ is 0.
Note: Trigonometry is a branch of mathematics that helps us to study the relationship between the sides and the angles of a triangle. In practical life, trigonometry is used by cartographers (to make maps). It is also used by the aviation and naval industries. In fact, trigonometry is even used by Astronomers to find the distance between two stars. Hence, it has an important role to play in everyday life. The three most common trigonometric functions are the tangent function, the sine and the cosine function. In simple terms, they are written as ‘sin’, ‘cos’ and ‘tan’. Hence, trigonometry is not just a chapter to study, in fact, it is being used in everyday life.
Formula Used:
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Complete step-by-step answer:
It is given that $p = \cos 55^\circ $, $q = \cos 65^\circ $ and $r = \cos 175^\circ $.
First, we will take the LCM of the denominators of the given expression $\dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}}$, we get
$\dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{q + p + r}}{{pq}}$
Now, substituting the given values in this fraction, we get,
$ \Rightarrow \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{\cos 65^\circ + \cos 55^\circ + \cos 175^\circ }}{{\cos 55^\circ \times \cos 65^\circ }}$
Now, using the formula $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ in the numerator for $\cos 65^\circ + \cos 55^\circ $, we get,
$ \Rightarrow \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{2\cos 60^\circ \cos 5^\circ + \cos \left( {180^\circ - 5^\circ } \right)}}{{\cos 55^\circ \times \cos 65^\circ }}$
Now, as we know, $\cos \left( {180^\circ - \theta } \right) = - \cos \theta $ because in the second quadrant, cosine is negative. Therefore, we get
$ \Rightarrow \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{2\cos 60^\circ \cos 5^\circ - \cos 5^\circ }}{{\cos 55^\circ \times \cos 65^\circ }}$
Now, substituting $\cos 60^\circ = \dfrac{1}{2}$ in the above equation, we get
$ \Rightarrow \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{2 \times \dfrac{1}{2} \times \cos 5^\circ - \cos 5^\circ }}{{\cos 55^\circ \times \cos 65^\circ }}$
$ \Rightarrow \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{{\cos 5^\circ - \cos 5^\circ }}{{\cos 55^\circ \times \cos 65^\circ }}$
Subtracting the terms in the numerator, we get
$\dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}} = \dfrac{0}{{\cos 55^\circ \times \cos 65^\circ }} = 0$
Therefore, the value of $\dfrac{1}{p} + \dfrac{1}{q} + \dfrac{r}{{pq}}$ is 0.
Note: Trigonometry is a branch of mathematics that helps us to study the relationship between the sides and the angles of a triangle. In practical life, trigonometry is used by cartographers (to make maps). It is also used by the aviation and naval industries. In fact, trigonometry is even used by Astronomers to find the distance between two stars. Hence, it has an important role to play in everyday life. The three most common trigonometric functions are the tangent function, the sine and the cosine function. In simple terms, they are written as ‘sin’, ‘cos’ and ‘tan’. Hence, trigonometry is not just a chapter to study, in fact, it is being used in everyday life.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

