
If P and Q are the sum of odd term and sum of even terms in the expansion of \[{{\left( x+a \right)}^{n}}\] respectively then prove that
(1) \[{{P}^{2}}-{{Q}^{2}}={{\left( {{x}^{2}}-{{a}^{2}} \right)}^{n}}\]
(2) \[4PQ={{\left( x+a \right)}^{2n}}-{{\left( x-a \right)}^{2n}}\]
Answer
569.1k+ views
Hint: We solve this problem by using the binomial expansion and some algebra formulas.
We have the binomial expansion of \[{{\left( x+a \right)}^{n}}\] and \[{{\left( x-a \right)}^{n}}\] as
\[{{\left( x+a \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{}^{n}{{C}_{n}}{{a}^{n}}\]
\[{{\left( x-a \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}-{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{n}}\]
We have the formula of algebra as
\[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\]
\[4ab={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}\]
Complete step by step answer:
We are given that the P and Q are the sum of odd term and sum of even terms in the expansion of \[{{\left( x+a \right)}^{n}}\] respectively
We know that the binomial expansion of \[{{\left( x+a \right)}^{n}}\] as
\[{{\left( x+a \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{}^{n}{{C}_{n}}{{a}^{n}}\]
By using the given condition that P and Q are sum of odd and even terms we get
\[\Rightarrow P={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+.......\]
\[\Rightarrow Q={}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{3}}{{x}^{n-3}}{{a}^{3}}+.....\]
Now, by adding the values of P and Q we get
\[\begin{align}
& \Rightarrow P+Q=\left( {}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....... \right)+\left( {}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{3}}{{x}^{n-3}}{{a}^{3}}+..... \right) \\
& \Rightarrow P+Q={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{}^{n}{{C}_{n}}{{a}^{n}} \\
& \Rightarrow P+Q={{\left( x+a \right)}^{n}} \\
\end{align}\]
Now, by subtracting the value of Q from P then we get
\[\begin{align}
& \Rightarrow P-Q=\left( {}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....... \right)-\left( {}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{3}}{{x}^{n-3}}{{a}^{3}}+..... \right) \\
& \Rightarrow P-Q={}^{n}{{C}_{0}}{{x}^{n}}-{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{n}} \\
\end{align}\]
We know that the binomial expansion of \[{{\left( x-a \right)}^{n}}\] is given as
\[{{\left( x-a \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}-{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{n}}\]
By using the above formula we get
\[\Rightarrow P-Q={{\left( x-a \right)}^{n}}\]
Now, let us prove the first result
We know that the formula of algebra as
\[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\]
By using the above formula to P and Q we get
\[\Rightarrow {{P}^{2}}-{{Q}^{2}}=\left( P+Q \right)\left( P-Q \right)\]
By substituting the required values in above equation then we get
\[\begin{align}
& \Rightarrow {{P}^{2}}-{{Q}^{2}}={{\left( x+a \right)}^{n}}\times {{\left( x-a \right)}^{n}} \\
& \Rightarrow {{P}^{2}}-{{Q}^{2}}={{\left( {{x}^{2}}-{{a}^{2}} \right)}^{n}} \\
\end{align}\]
Now, let us prove the second result
We know that the formula of algebra as
\[4ab={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}\]
By using the above formula to P and Q we get
\[\Rightarrow 4PQ={{\left( P+Q \right)}^{2}}-{{\left( P-Q \right)}^{2}}\]
By substituting the required values in above equation then we get
\[\begin{align}
& \Rightarrow 4PQ={{\left( {{\left( x+a \right)}^{n}} \right)}^{2}}-{{\left( {{\left( x-a \right)}^{n}} \right)}^{2}} \\
& \Rightarrow 4PQ={{\left( x+a \right)}^{2n}}-{{\left( x-a \right)}^{2n}} \\
\end{align}\]
Therefore we can conclude that the required results has been proved that are
\[\therefore {{P}^{2}}-{{Q}^{2}}={{\left( {{x}^{2}}-{{a}^{2}} \right)}^{n}}\]
\[\therefore 4PQ={{\left( x+a \right)}^{2n}}-{{\left( x-a \right)}^{2n}}\]
Note:
Students may get confused between the odd terms and odd power terms.
We are given that P is the sum of odd terms of the expansion \[{{\left( x+a \right)}^{n}}\]
By using the binomial expansion we get the value of P as
\[\Rightarrow P={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+.......\]
But students may get confusion that P is the sum of odd power terms and take the value of P as
\[\Rightarrow P={}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{3}}{{x}^{n-3}}{{a}^{3}}+.....\]
This gives the wrong answer because the odd term refers to the number of the term.
The first term will be \[{}^{n}{{C}_{0}}{{x}^{n}}\] which is considered as an odd term.
Similarly if Q is the sum of even terms we get the value of Q as
\[\Rightarrow Q={}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{3}}{{x}^{n-3}}{{a}^{3}}+.....\]
We have the binomial expansion of \[{{\left( x+a \right)}^{n}}\] and \[{{\left( x-a \right)}^{n}}\] as
\[{{\left( x+a \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{}^{n}{{C}_{n}}{{a}^{n}}\]
\[{{\left( x-a \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}-{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{n}}\]
We have the formula of algebra as
\[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\]
\[4ab={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}\]
Complete step by step answer:
We are given that the P and Q are the sum of odd term and sum of even terms in the expansion of \[{{\left( x+a \right)}^{n}}\] respectively
We know that the binomial expansion of \[{{\left( x+a \right)}^{n}}\] as
\[{{\left( x+a \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{}^{n}{{C}_{n}}{{a}^{n}}\]
By using the given condition that P and Q are sum of odd and even terms we get
\[\Rightarrow P={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+.......\]
\[\Rightarrow Q={}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{3}}{{x}^{n-3}}{{a}^{3}}+.....\]
Now, by adding the values of P and Q we get
\[\begin{align}
& \Rightarrow P+Q=\left( {}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....... \right)+\left( {}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{3}}{{x}^{n-3}}{{a}^{3}}+..... \right) \\
& \Rightarrow P+Q={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{}^{n}{{C}_{n}}{{a}^{n}} \\
& \Rightarrow P+Q={{\left( x+a \right)}^{n}} \\
\end{align}\]
Now, by subtracting the value of Q from P then we get
\[\begin{align}
& \Rightarrow P-Q=\left( {}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....... \right)-\left( {}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{3}}{{x}^{n-3}}{{a}^{3}}+..... \right) \\
& \Rightarrow P-Q={}^{n}{{C}_{0}}{{x}^{n}}-{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{n}} \\
\end{align}\]
We know that the binomial expansion of \[{{\left( x-a \right)}^{n}}\] is given as
\[{{\left( x-a \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}-{}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+....+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}{{a}^{n}}\]
By using the above formula we get
\[\Rightarrow P-Q={{\left( x-a \right)}^{n}}\]
Now, let us prove the first result
We know that the formula of algebra as
\[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\]
By using the above formula to P and Q we get
\[\Rightarrow {{P}^{2}}-{{Q}^{2}}=\left( P+Q \right)\left( P-Q \right)\]
By substituting the required values in above equation then we get
\[\begin{align}
& \Rightarrow {{P}^{2}}-{{Q}^{2}}={{\left( x+a \right)}^{n}}\times {{\left( x-a \right)}^{n}} \\
& \Rightarrow {{P}^{2}}-{{Q}^{2}}={{\left( {{x}^{2}}-{{a}^{2}} \right)}^{n}} \\
\end{align}\]
Now, let us prove the second result
We know that the formula of algebra as
\[4ab={{\left( a+b \right)}^{2}}-{{\left( a-b \right)}^{2}}\]
By using the above formula to P and Q we get
\[\Rightarrow 4PQ={{\left( P+Q \right)}^{2}}-{{\left( P-Q \right)}^{2}}\]
By substituting the required values in above equation then we get
\[\begin{align}
& \Rightarrow 4PQ={{\left( {{\left( x+a \right)}^{n}} \right)}^{2}}-{{\left( {{\left( x-a \right)}^{n}} \right)}^{2}} \\
& \Rightarrow 4PQ={{\left( x+a \right)}^{2n}}-{{\left( x-a \right)}^{2n}} \\
\end{align}\]
Therefore we can conclude that the required results has been proved that are
\[\therefore {{P}^{2}}-{{Q}^{2}}={{\left( {{x}^{2}}-{{a}^{2}} \right)}^{n}}\]
\[\therefore 4PQ={{\left( x+a \right)}^{2n}}-{{\left( x-a \right)}^{2n}}\]
Note:
Students may get confused between the odd terms and odd power terms.
We are given that P is the sum of odd terms of the expansion \[{{\left( x+a \right)}^{n}}\]
By using the binomial expansion we get the value of P as
\[\Rightarrow P={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+.......\]
But students may get confusion that P is the sum of odd power terms and take the value of P as
\[\Rightarrow P={}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{3}}{{x}^{n-3}}{{a}^{3}}+.....\]
This gives the wrong answer because the odd term refers to the number of the term.
The first term will be \[{}^{n}{{C}_{0}}{{x}^{n}}\] which is considered as an odd term.
Similarly if Q is the sum of even terms we get the value of Q as
\[\Rightarrow Q={}^{n}{{C}_{1}}{{x}^{n-1}}a+{}^{n}{{C}_{3}}{{x}^{n-3}}{{a}^{3}}+.....\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Which Country is Called "The Land of Festivals"?

What type of cell is found in the Seminiferous tub class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

