
If p and q are perpendicular distances from origin to the straight lines $x\sec \theta -y\csc \theta =a$ and $x\cos \theta +y\sin \theta =a\cos 2\theta $, then which of the following is correct ?
(a) $4{{p}^{2}}+{{q}^{2}}={{a}^{2}}$
(b) ${{p}^{2}}+{{q}^{2}}={{a}^{2}}$
(c) ${{p}^{2}}+2{{q}^{2}}={{a}^{2}}$
(d) $4{{p}^{2}}+2{{q}^{2}}=2{{a}^{2}}$
Answer
599.4k+ views
Hint: Use the formula for calculating the perpendicular distance from a point $\left( {{x}_{1}},{{y}_{1}} \right)$ to the line $Ax+By+C=0$ i.e. given as $\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right|$. Convert $\sec \theta $ and $\csc \theta $ to $\dfrac{1}{\cos \theta }$ and $\dfrac{1}{\sin \theta }$ respectively and now try to eliminate $\theta $ and use ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$.
Complete step-by-step solution -
We know the perpendicular distance of a line $Ax+By+C=0$ by a general point $\left( {{x}_{1}},{{y}_{1}} \right)$ can be given by the relation
Perpendicular distance$=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right|$ ……………………………………(i)
So, we have two different lines $x\sec \theta -y\csc \theta =a$ and $x\cos \theta +y\sin \theta =a\cos 2\theta $ and perpendicular distance of each lines from the origin are given as p and q respectively.
Hence, we can calculate the perpendicular distance of each line by equation (i) and can equate to the given distances p and q.
So, perpendicular distance from line 1 from origin $\left( 0,0 \right)$ can be given as
$p=\left| \dfrac{0\left( \sec \theta \right)-0\left( \csc \theta \right)-a}{\sqrt{{{\left( \sec \theta \right)}^{2}}+{{\left( -\csc \theta \right)}^{2}}}} \right|$
$p=\left| \dfrac{-a}{\sqrt{{{\sec }^{2}}\theta +{{\csc }^{2}}\theta }} \right|$
On squaring both sides, we can remove the modulus sign as the square of any number will never be negative. Hence, we get
${{p}^{2}}={{\left( \dfrac{-a}{\sqrt{{{\sec }^{2}}\theta +{{\csc }^{2}}\theta }} \right)}^{2}}$
${{p}^{2}}=\dfrac{{{a}^{2}}}{{{\sec }^{2}}\theta +{{\csc }^{2}}\theta }$
Now, we can change $\sec \theta $ to $\cos \theta $ by relation of $\sec \theta =\dfrac{1}{\cos \theta }$ and $\csc \theta $ to $\sin \theta $ by relation $\csc \theta =\dfrac{1}{\sin \theta }$.
Hence, we can simplify ${{p}^{2}}$ as
${{p}^{2}}=\dfrac{{{a}^{2}}}{\left( \dfrac{1}{{{\cos }^{2}}\theta }+\dfrac{1}{{{\sin }^{2}}\theta } \right)}$
${{p}^{2}}=\dfrac{{{a}^{2}}}{\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }}$
Now, we can replace ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta $ by 1 using the relation
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
Hence, we get
${{p}^{2}}=\dfrac{{{a}^{2}}}{\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }}$
${{p}^{2}}={{a}^{2}}{{\sin }^{2}}\theta {{\cos }^{2}}\theta $ ….....................................................(ii)
Now, similarly we can get perpendicular distance of line $x\cos \theta +y\sin \theta =a\cos 2\theta $ from origin $\left( 0,0 \right)$ by equation (i) and equating it to ‘q’. Hence, we get
$q=\left| \dfrac{0\left( \cos \theta \right)+0\left( \sin \theta \right)-a\cos 2\theta }{\sqrt{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }} \right|$
\[\Rightarrow q=\left| \dfrac{-a\cos 2\theta }{\sqrt{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }} \right|\]
Now, on squaring both sides, we get
${{q}^{2}}=\dfrac{{{\left( -a\cos 2\theta \right)}^{2}}}{\left( \sqrt{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta } \right)}$
${{q}^{2}}=\dfrac{{{a}^{2}}{{\cos }^{2}}2\theta }{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}$
Now, we can replace ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ by 1 using the trigonometric identity given as ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Hence, we can get value of ${{q}^{2}}$ as
${{q}^{2}}={{a}^{2}}{{\cos }^{2}}2\theta $ …............................(iii)
Now, we know the trigonometric identity of $\cos 2\theta $, given as
$\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta $ ………………………………….(iv)
Hence, we can replace $\cos 2\theta $ by ${{\cos }^{2}}\theta -{{\sin }^{2}}\theta $ using equation (iv) in equation (iii) ; So, we get
${{q}^{2}}={{a}^{2}}{{\left( \cos 2\theta \right)}^{2}}$
${{q}^{2}}={{a}^{2}}\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right)$ …………………………..(v)
Hence, we can rewrite equation (v) by using algebraic identity ${{\left( a-b \right)}^{2}}$ given as
${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$
So, we get the value of ${{q}^{2}}$ from equation (v) using the above algebraic identity. Hence, we get
${{q}^{2}}={{a}^{2}}\left( {{\cos }^{4}}\theta +{{\sin }^{4}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)$
Now, add and subtract $2{{\sin }^{2}}\theta {{\cos }^{2}}\theta $ in the bracket of above equation. So, we get
${{q}^{2}}={{a}^{2}}\left( {{\cos }^{4}}\theta +{{\sin }^{4}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)$
$\Rightarrow {{q}^{2}}={{a}^{2}}\left( {{\cos }^{4}}\theta +{{\sin }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)$
$\Rightarrow {{q}^{2}}={{a}^{2}}\left[ {{\left( {{\sin }^{2}}\theta \right)}^{2}}+{{\left( {{\cos }^{2}}\theta \right)}^{2}}+2\times {{\sin }^{2}}\theta \times {{\cos }^{2}}\theta -4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right]$
Now, we can use algebraic identity of ${{\left( a+b \right)}^{2}}$ to simplify the above equation, which is given as
${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
Hence, we get value of ${{q}^{2}}$ as
${{q}^{2}}={{a}^{2}}\left( {{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{2}}-4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)$
Now, put ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta $ as 1 using relation
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
Hence, we get
${{q}^{2}}={{a}^{2}}\left( 1-4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)$ ……………………………………….(vi)
Now, we can get value of ${{\sin }^{2}}\theta {{\cos }^{2}}\theta $ from the equation (ii),
${{p}^{2}}={{a}^{2}}{{\sin }^{2}}\theta {{\cos }^{2}}\theta $
$\Rightarrow {{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{{{p}^{2}}}{{{a}^{2}}}$ ………………………………………..(vii)
Hence, we can replace ${{\sin }^{2}}\theta {{\cos }^{2}}\theta $ by $\dfrac{{{p}^{2}}}{{{a}^{2}}}$ in the equation (vi). Hence, we get
${{q}^{2}}={{a}^{2}}\left( 1-\dfrac{4{{p}^{2}}}{{{a}^{2}}} \right)$
${{q}^{2}}={{a}^{2}}\left( \dfrac{{{a}^{2}}-4{{p}^{2}}}{{{a}^{2}}} \right)$
$\Rightarrow {{q}^{2}}={{a}^{2}}-4{{p}^{2}}$
$\Rightarrow {{q}^{2}}+4{{p}^{2}}={{a}^{2}}$
Hence, option (A) is correct.
Note: Don’t get confused with the modulus sign with the perpendicular distance formula. Squaring both the sides will remove the modulus function.
One can use ${{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab$ to simplify ${{\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right)}^{2}}$. So, we get ${{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}^{2}}={{\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right)}^{2}}+4{{\cos }^{2}}\theta {{\sin }^{2}}\theta $ .
Calculation is an important part of the question as well. So, be careful with it as well.
Complete step-by-step solution -
We know the perpendicular distance of a line $Ax+By+C=0$ by a general point $\left( {{x}_{1}},{{y}_{1}} \right)$ can be given by the relation
Perpendicular distance$=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C}{\sqrt{{{A}^{2}}+{{B}^{2}}}} \right|$ ……………………………………(i)
So, we have two different lines $x\sec \theta -y\csc \theta =a$ and $x\cos \theta +y\sin \theta =a\cos 2\theta $ and perpendicular distance of each lines from the origin are given as p and q respectively.
Hence, we can calculate the perpendicular distance of each line by equation (i) and can equate to the given distances p and q.
So, perpendicular distance from line 1 from origin $\left( 0,0 \right)$ can be given as
$p=\left| \dfrac{0\left( \sec \theta \right)-0\left( \csc \theta \right)-a}{\sqrt{{{\left( \sec \theta \right)}^{2}}+{{\left( -\csc \theta \right)}^{2}}}} \right|$
$p=\left| \dfrac{-a}{\sqrt{{{\sec }^{2}}\theta +{{\csc }^{2}}\theta }} \right|$
On squaring both sides, we can remove the modulus sign as the square of any number will never be negative. Hence, we get
${{p}^{2}}={{\left( \dfrac{-a}{\sqrt{{{\sec }^{2}}\theta +{{\csc }^{2}}\theta }} \right)}^{2}}$
${{p}^{2}}=\dfrac{{{a}^{2}}}{{{\sec }^{2}}\theta +{{\csc }^{2}}\theta }$
Now, we can change $\sec \theta $ to $\cos \theta $ by relation of $\sec \theta =\dfrac{1}{\cos \theta }$ and $\csc \theta $ to $\sin \theta $ by relation $\csc \theta =\dfrac{1}{\sin \theta }$.
Hence, we can simplify ${{p}^{2}}$ as
${{p}^{2}}=\dfrac{{{a}^{2}}}{\left( \dfrac{1}{{{\cos }^{2}}\theta }+\dfrac{1}{{{\sin }^{2}}\theta } \right)}$
${{p}^{2}}=\dfrac{{{a}^{2}}}{\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }}$
Now, we can replace ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta $ by 1 using the relation
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
Hence, we get
${{p}^{2}}=\dfrac{{{a}^{2}}}{\dfrac{1}{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }}$
${{p}^{2}}={{a}^{2}}{{\sin }^{2}}\theta {{\cos }^{2}}\theta $ ….....................................................(ii)
Now, similarly we can get perpendicular distance of line $x\cos \theta +y\sin \theta =a\cos 2\theta $ from origin $\left( 0,0 \right)$ by equation (i) and equating it to ‘q’. Hence, we get
$q=\left| \dfrac{0\left( \cos \theta \right)+0\left( \sin \theta \right)-a\cos 2\theta }{\sqrt{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }} \right|$
\[\Rightarrow q=\left| \dfrac{-a\cos 2\theta }{\sqrt{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }} \right|\]
Now, on squaring both sides, we get
${{q}^{2}}=\dfrac{{{\left( -a\cos 2\theta \right)}^{2}}}{\left( \sqrt{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta } \right)}$
${{q}^{2}}=\dfrac{{{a}^{2}}{{\cos }^{2}}2\theta }{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}$
Now, we can replace ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ by 1 using the trigonometric identity given as ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
Hence, we can get value of ${{q}^{2}}$ as
${{q}^{2}}={{a}^{2}}{{\cos }^{2}}2\theta $ …............................(iii)
Now, we know the trigonometric identity of $\cos 2\theta $, given as
$\cos 2\theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta $ ………………………………….(iv)
Hence, we can replace $\cos 2\theta $ by ${{\cos }^{2}}\theta -{{\sin }^{2}}\theta $ using equation (iv) in equation (iii) ; So, we get
${{q}^{2}}={{a}^{2}}{{\left( \cos 2\theta \right)}^{2}}$
${{q}^{2}}={{a}^{2}}\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right)$ …………………………..(v)
Hence, we can rewrite equation (v) by using algebraic identity ${{\left( a-b \right)}^{2}}$ given as
${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$
So, we get the value of ${{q}^{2}}$ from equation (v) using the above algebraic identity. Hence, we get
${{q}^{2}}={{a}^{2}}\left( {{\cos }^{4}}\theta +{{\sin }^{4}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)$
Now, add and subtract $2{{\sin }^{2}}\theta {{\cos }^{2}}\theta $ in the bracket of above equation. So, we get
${{q}^{2}}={{a}^{2}}\left( {{\cos }^{4}}\theta +{{\sin }^{4}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)$
$\Rightarrow {{q}^{2}}={{a}^{2}}\left( {{\cos }^{4}}\theta +{{\sin }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)$
$\Rightarrow {{q}^{2}}={{a}^{2}}\left[ {{\left( {{\sin }^{2}}\theta \right)}^{2}}+{{\left( {{\cos }^{2}}\theta \right)}^{2}}+2\times {{\sin }^{2}}\theta \times {{\cos }^{2}}\theta -4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right]$
Now, we can use algebraic identity of ${{\left( a+b \right)}^{2}}$ to simplify the above equation, which is given as
${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$
Hence, we get value of ${{q}^{2}}$ as
${{q}^{2}}={{a}^{2}}\left( {{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{2}}-4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)$
Now, put ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta $ as 1 using relation
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
Hence, we get
${{q}^{2}}={{a}^{2}}\left( 1-4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right)$ ……………………………………….(vi)
Now, we can get value of ${{\sin }^{2}}\theta {{\cos }^{2}}\theta $ from the equation (ii),
${{p}^{2}}={{a}^{2}}{{\sin }^{2}}\theta {{\cos }^{2}}\theta $
$\Rightarrow {{\sin }^{2}}\theta {{\cos }^{2}}\theta =\dfrac{{{p}^{2}}}{{{a}^{2}}}$ ………………………………………..(vii)
Hence, we can replace ${{\sin }^{2}}\theta {{\cos }^{2}}\theta $ by $\dfrac{{{p}^{2}}}{{{a}^{2}}}$ in the equation (vi). Hence, we get
${{q}^{2}}={{a}^{2}}\left( 1-\dfrac{4{{p}^{2}}}{{{a}^{2}}} \right)$
${{q}^{2}}={{a}^{2}}\left( \dfrac{{{a}^{2}}-4{{p}^{2}}}{{{a}^{2}}} \right)$
$\Rightarrow {{q}^{2}}={{a}^{2}}-4{{p}^{2}}$
$\Rightarrow {{q}^{2}}+4{{p}^{2}}={{a}^{2}}$
Hence, option (A) is correct.
Note: Don’t get confused with the modulus sign with the perpendicular distance formula. Squaring both the sides will remove the modulus function.
One can use ${{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab$ to simplify ${{\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right)}^{2}}$. So, we get ${{\left( {{\cos }^{2}}\theta +{{\sin }^{2}}\theta \right)}^{2}}={{\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right)}^{2}}+4{{\cos }^{2}}\theta {{\sin }^{2}}\theta $ .
Calculation is an important part of the question as well. So, be careful with it as well.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

