
If \[p\] and \[p'\] be the distances of origin from the lines \[\text{x sec }\!\!\alpha\!\!\text{ +y cosec }\!\!\alpha\!\!\text{ =k}\] and \[\text{x cos}\alpha \text{-y sin}\alpha \text{=k cos2}\alpha \] then \[4{{p}^{2}}+p{{'}^{2}}\]
\[\begin{align}
& \text{1) k} \\
& \text{2) 2k} \\
& \text{3) }{{\text{k}}^{\text{2}}} \\
& \text{4) 2}{{\text{k}}^{\text{2}}} \\
\end{align}\]
Answer
510.6k+ views
Hint : Firstly we will simplify the given equations and then by the distance between two parallel lines formula we may calculate the values in terms of \[\text{p and p }\!\!'\!\!\text{ }\] and then we will put the values of \[\text{p and p }\!\!'\!\!\text{ }\] in the given equation to check which option is correct in the above options.
Complete step-by-step solution:
As we already know parallel lines are those lines that never intersect each other even if you extend them. Parallel lines are always drawn on the same plane and they are always equidistant from each other.
Lines which meet or appear to meet when extended are called intersecting lines and the point where they meet is called the point of intersection.
When parallel lines get crossed by each other they are called transversal.
We know that slopes of two parallel lines are equal. Therefore, two parallel lines can be taken in the form
\[y=mx+{{c}_{1}}\] say line\[\text{1}\]
and \[y=mx+{{c}_{2}}\] say line \[\text{2}\]
line\[\text{1}\] will intersect \[x-axis\] at the point \[(\dfrac{-{{c}_{1}}}{m},0)\]
distance between the two lines is equal to the length of the perpendicular from a point to the line \[\text{2}\]
therefore the distance between the two lines will be given by \[d=\dfrac{\left| {{c}_{1}}-{{c}_{2}} \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\]
distance between the points \[({{x}_{1}},{{y}_{1}})\] and a line is \[d=\dfrac{\left| {{a}_{1}}{{x}_{1}}+{{b}_{1}}{{y}_{1}}+{{c}_{1}} \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\] where \[{{a}_{1}}\] and \[{{b}_{1}}\] are the coefficients of variable \[x,y\] in the equation of line
the equation of line is \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\]
Now according to the question:
\[\text{x sec }\!\!\alpha\!\!\text{ +y cosec }\!\!\alpha\!\!\text{ =k}\]
Making the equation in form of \[a{{x}_{1}}+b{{y}_{1}}+{{c}_{1}}\] hence, \[\text{x sec }\!\!\alpha\!\!\text{ +y cosec }\!\!\alpha\!\!\text{ -k=0}\]
The distance of line \[\text{x sec }\!\!\alpha\!\!\text{ +y cosec }\!\!\alpha\!\!\text{ -k=0}\]of the above line from the origin \[(0,0)\]is given by
\[p=\dfrac{\left| a{{x}_{1}}+b{{y}_{1}}+{{c}_{1}} \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\]
Where origin are \[(0,0)\] means \[x=0,y=0\]
\[p=\dfrac{\left| \text{0 }\!\!\times\!\!\text{ sec }\!\!\alpha\!\!\text{ +0 }\!\!\times\!\!\text{ cosec }\!\!\alpha\!\!\text{ -k} \right|}{\sqrt{\text{se}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +cose}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}}\]
\[p=\dfrac{\left| -k \right|}{\sqrt{\text{se}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +cose}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}}\]
Making the equation in form of \[a{{x}_{1}}+b{{y}_{1}}+{{c}_{1}}\] hence, \[\text{x cos}\alpha \text{-y sin}\alpha -\text{k cos2}\alpha =0\]
The distance of line \[\text{x cos}\alpha \text{-y sin}\alpha -\text{k cos2}\alpha =0\] of the above line from the origin \[(0,0)\]is given by
Now calculating for \[p'\]
\[p'=\dfrac{\left| a{{x}_{1}}+b{{y}_{1}}+{{c}_{1}} \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\]
Where origin are \[(0,0)\] means \[x=0,y=0\]
\[p'=\dfrac{\left| \text{0 }\!\!\times\!\!\text{ cos }\!\!\alpha\!\!\text{ -0 }\!\!\times\!\!\text{ sin }\!\!\alpha\!\!\text{ -kcos2}\alpha \right|}{\sqrt{{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}}\]
\[p'=\dfrac{\left| -k\cos 2\alpha \right|}{\sqrt{{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}}\]
Now according to the question:
\[4{{p}^{2}}+p{{'}^{2}}\]
Putting the values of \[p\] and \[p'\] in \[4{{p}^{2}}+p{{'}^{2}}\]
\[\dfrac{4{{k}^{2}}}{\text{se}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +cose}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}+\dfrac{{{k}^{2}}\cdot {{\cos }^{2}}2\alpha }{{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}\]
Taking \[{{k}^{2}}\] in common and putting \[{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ =1}\] we get
\[{{k}^{2}}[\dfrac{4}{\text{se}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +cose}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}+{{\cos }^{2}}2\alpha ]\]
Now by the formula \[\cos 2\alpha ={{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha \]
\[{{k}^{2}}[\dfrac{4}{\text{se}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +cose}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}+{{({{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha )}^{2}}]\]
\[{{k}^{2}}[\dfrac{4}{\dfrac{\text{1}}{{{\cos }^{2}}\alpha }\text{+}\dfrac{\text{1}}{{{\sin }^{2}}\alpha }}+{{({{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha )}^{2}}]\]
\[{{k}^{2}}[\dfrac{4{{\sin }^{2}}\alpha \cdot {{\cos }^{2}}\alpha }{{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}+{{({{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha )}^{2}}]\]
Putting \[{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ =1}\] we get
\[{{k}^{2}}[4{{\sin }^{2}}\alpha \cdot {{\cos }^{2}}\alpha +{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha -2{{\sin }^{2}}\alpha \cdot {{\cos }^{2}}\alpha ]\]
\[{{k}^{2}}[{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha +2{{\sin }^{2}}\alpha \cdot {{\cos }^{2}}\alpha ]\]
According to the formula \[{{a}^{2}}+{{b}^{2}}+2ab={{(a+b)}^{2}}\]
\[{{k}^{2}}[{{({{\sin }^{2}}\alpha +co{{s}^{2}}\alpha )}^{2}}]\]
putting \[{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ =1}\] we get
\[={{k}^{2}}\]
Hence by the above process we can prove that option\[\text{(3)}\] is correct that \[4{{p}^{2}}+p{{'}^{2}}={{k}^{2}}\]
Note: Each line can have many parallel lines to it and parallel lines can be extended upto infinity. If you want to remember the sign of parallel lines you may take the example of an equals sign \[\text{(=)}\]or railway track, opposite walls and doors in a room , opposite sides of a blackboard.
Complete step-by-step solution:
As we already know parallel lines are those lines that never intersect each other even if you extend them. Parallel lines are always drawn on the same plane and they are always equidistant from each other.
Lines which meet or appear to meet when extended are called intersecting lines and the point where they meet is called the point of intersection.
When parallel lines get crossed by each other they are called transversal.
We know that slopes of two parallel lines are equal. Therefore, two parallel lines can be taken in the form
\[y=mx+{{c}_{1}}\] say line\[\text{1}\]
and \[y=mx+{{c}_{2}}\] say line \[\text{2}\]
line\[\text{1}\] will intersect \[x-axis\] at the point \[(\dfrac{-{{c}_{1}}}{m},0)\]
distance between the two lines is equal to the length of the perpendicular from a point to the line \[\text{2}\]
therefore the distance between the two lines will be given by \[d=\dfrac{\left| {{c}_{1}}-{{c}_{2}} \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\]
distance between the points \[({{x}_{1}},{{y}_{1}})\] and a line is \[d=\dfrac{\left| {{a}_{1}}{{x}_{1}}+{{b}_{1}}{{y}_{1}}+{{c}_{1}} \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\] where \[{{a}_{1}}\] and \[{{b}_{1}}\] are the coefficients of variable \[x,y\] in the equation of line
the equation of line is \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\]
Now according to the question:
\[\text{x sec }\!\!\alpha\!\!\text{ +y cosec }\!\!\alpha\!\!\text{ =k}\]
Making the equation in form of \[a{{x}_{1}}+b{{y}_{1}}+{{c}_{1}}\] hence, \[\text{x sec }\!\!\alpha\!\!\text{ +y cosec }\!\!\alpha\!\!\text{ -k=0}\]
The distance of line \[\text{x sec }\!\!\alpha\!\!\text{ +y cosec }\!\!\alpha\!\!\text{ -k=0}\]of the above line from the origin \[(0,0)\]is given by
\[p=\dfrac{\left| a{{x}_{1}}+b{{y}_{1}}+{{c}_{1}} \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\]
Where origin are \[(0,0)\] means \[x=0,y=0\]
\[p=\dfrac{\left| \text{0 }\!\!\times\!\!\text{ sec }\!\!\alpha\!\!\text{ +0 }\!\!\times\!\!\text{ cosec }\!\!\alpha\!\!\text{ -k} \right|}{\sqrt{\text{se}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +cose}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}}\]
\[p=\dfrac{\left| -k \right|}{\sqrt{\text{se}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +cose}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}}\]
Making the equation in form of \[a{{x}_{1}}+b{{y}_{1}}+{{c}_{1}}\] hence, \[\text{x cos}\alpha \text{-y sin}\alpha -\text{k cos2}\alpha =0\]
The distance of line \[\text{x cos}\alpha \text{-y sin}\alpha -\text{k cos2}\alpha =0\] of the above line from the origin \[(0,0)\]is given by
Now calculating for \[p'\]
\[p'=\dfrac{\left| a{{x}_{1}}+b{{y}_{1}}+{{c}_{1}} \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\]
Where origin are \[(0,0)\] means \[x=0,y=0\]
\[p'=\dfrac{\left| \text{0 }\!\!\times\!\!\text{ cos }\!\!\alpha\!\!\text{ -0 }\!\!\times\!\!\text{ sin }\!\!\alpha\!\!\text{ -kcos2}\alpha \right|}{\sqrt{{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}}\]
\[p'=\dfrac{\left| -k\cos 2\alpha \right|}{\sqrt{{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}}\]
Now according to the question:
\[4{{p}^{2}}+p{{'}^{2}}\]
Putting the values of \[p\] and \[p'\] in \[4{{p}^{2}}+p{{'}^{2}}\]
\[\dfrac{4{{k}^{2}}}{\text{se}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +cose}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}+\dfrac{{{k}^{2}}\cdot {{\cos }^{2}}2\alpha }{{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}\]
Taking \[{{k}^{2}}\] in common and putting \[{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ =1}\] we get
\[{{k}^{2}}[\dfrac{4}{\text{se}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +cose}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}+{{\cos }^{2}}2\alpha ]\]
Now by the formula \[\cos 2\alpha ={{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha \]
\[{{k}^{2}}[\dfrac{4}{\text{se}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +cose}{{\text{c}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}+{{({{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha )}^{2}}]\]
\[{{k}^{2}}[\dfrac{4}{\dfrac{\text{1}}{{{\cos }^{2}}\alpha }\text{+}\dfrac{\text{1}}{{{\sin }^{2}}\alpha }}+{{({{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha )}^{2}}]\]
\[{{k}^{2}}[\dfrac{4{{\sin }^{2}}\alpha \cdot {{\cos }^{2}}\alpha }{{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}+{{({{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha )}^{2}}]\]
Putting \[{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ =1}\] we get
\[{{k}^{2}}[4{{\sin }^{2}}\alpha \cdot {{\cos }^{2}}\alpha +{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha -2{{\sin }^{2}}\alpha \cdot {{\cos }^{2}}\alpha ]\]
\[{{k}^{2}}[{{\cos }^{4}}\alpha +{{\sin }^{4}}\alpha +2{{\sin }^{2}}\alpha \cdot {{\cos }^{2}}\alpha ]\]
According to the formula \[{{a}^{2}}+{{b}^{2}}+2ab={{(a+b)}^{2}}\]
\[{{k}^{2}}[{{({{\sin }^{2}}\alpha +co{{s}^{2}}\alpha )}^{2}}]\]
putting \[{{\cos }^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ +si}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ =1}\] we get
\[={{k}^{2}}\]
Hence by the above process we can prove that option\[\text{(3)}\] is correct that \[4{{p}^{2}}+p{{'}^{2}}={{k}^{2}}\]
Note: Each line can have many parallel lines to it and parallel lines can be extended upto infinity. If you want to remember the sign of parallel lines you may take the example of an equals sign \[\text{(=)}\]or railway track, opposite walls and doors in a room , opposite sides of a blackboard.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

